Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Femtosecond laser writing of lithium niobate ferroelectric nanodomains

Abstract

Lithium niobate (LiNbO3) is viewed as a promising material for optical communications and quantum photonic chips1,2. Recent breakthroughs in LiNbO3 nanophotonics have considerably boosted the development of high-speed electro-optic modulators3,4,5, frequency combs6,7 and broadband spectrometers8. However, the traditional method of electrical poling for ferroelectric domain engineering in optic9,10,11,12,13, acoustic14,15,16,17 and electronic applications18,19 is limited to two-dimensional space and micrometre-scale resolution. Here we demonstrate a non-reciprocal near-infrared laser-writing technique for reconfigurable three-dimensional ferroelectric domain engineering in LiNbO3 with nanoscale resolution. The proposed method is based on a laser-induced electric field that can either write or erase domain structures in the crystal, depending on the laser-writing direction. This approach offers a pathway for controllable nanoscale domain engineering in LiNbO3 and other transparent ferroelectric crystals, which has potential applications in high-efficiency frequency mixing20,21, high-frequency acoustic resonators14,15,16,17 and high-capacity non-volatile ferroelectric memory19,22.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The working principle of non-reciprocal laser writing for LiNbO3 ferroelectric domain engineering.
Fig. 2: Nanoscale control of LiNbO3 domains.
Fig. 3: Nanodomain structure fabrication through non-reciprocal 3D laser writing.
Fig. 4: Reconfigurable LiNbO3 nanodomain engineering.

Similar content being viewed by others

Data availability

Source data for Extended Data Figs. 4b and 6b are provided with the paper. The data supporting the findings of this study are available within the article. 

References

  1. Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 13, 242–352 (2021).

    Article  Google Scholar 

  2. Sun, D. H. et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl. 9, 197 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. He, M. B. et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–365 (2019).

    Article  ADS  CAS  Google Scholar 

  5. Li, M. X. et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11, 4123 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).

    Article  ADS  CAS  Google Scholar 

  8. Pohl, D. et al. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photon. 14, 24–29 (2019).

    Article  ADS  CAS  Google Scholar 

  9. Bartnick, M. et al. Cryogenic second-harmonic generation in periodically poled lithium niobate waveguides. Phys. Rev. Appl. 15, 024028 (2021).

    Article  ADS  CAS  Google Scholar 

  10. Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).

    Article  ADS  CAS  Google Scholar 

  11. Zhu, S. N., Zhu, Y. Y. & Ming, N. B. Quasi–phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Ellenbogen, T., Noa, V. B., Ayelet, G. P. & Arie, A. Nonlinear generation and manipulation of Airy beams. Nat. Photon. 3, 395–398 (2009).

    Article  ADS  CAS  Google Scholar 

  13. Yuan, S. et al. Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity. Phys. Rev. Lett. 127, 153901 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Yudistira, D., Benchabane, S., Janner, D. & Pruneri, V. Diffraction less and strongly confined surface acoustic waves in domain inverted LiNbO3 superlattices. Appl. Phys. Lett. 98, 233504 (2011).

    Article  ADS  CAS  Google Scholar 

  15. Yin, R. C., Yu, S. Y., He, C., Lu, M. H. & Chen, Y. F. Bulk acoustic wave delay line in acoustic superlattice. Appl. Phys. Lett. 97, 092905 (2010).

    Article  ADS  CAS  Google Scholar 

  16. Yudistira, D., Benchabane, S., Janner, D. & Pruneri, V. Surface acoustic wave generation in zx-cut LiNbO3 superlattices using coplanar electrodes. Appl. Phys. Lett. 95, 052901 (2009).

    Article  ADS  CAS  Google Scholar 

  17. Lu, Y. Q. et al. Optical properties of an ionic-type phononic crystal. Science 284, 1822–1824 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Chai, X. et al. Nonvolatile ferroelectric field-effect transistors. Nat. Commun. 11, 2811 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meier, D. & Selbach, S. M. Ferroelectric domain walls for nanotechnology. Nat. Rev. Mater. 7, 157–173 (2021).

    Article  ADS  CAS  Google Scholar 

  20. Canalias, C. & Pasiskevicius, V. Mirrorless optical parametric oscillator. Nat. Photon. 1, 459–462 (2007).

    Article  ADS  CAS  Google Scholar 

  21. Jia, K. P. et al. Midinfrared tunable laser with noncritical frequency matching in box resonator geometry. Phys. Rev. Lett. 127, 213902 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, 1700512 (2017).

    Article  ADS  CAS  Google Scholar 

  23. Marpaung, D., Yao, J. P. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

    Article  ADS  CAS  Google Scholar 

  24. Jin, H. et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett. 113, 103601 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Solntsev, A. S. et al. Generation of nonclassical biphoton states through cascaded quantum walks on a nonlinear chip. Phys. Rev. X 4, 031007 (2014).

    Google Scholar 

  26. Saravi, S., Pertsch, T. & Setzpfandt, F. Lithium niobate on insulator: An emerging platform for integrated quantum photonics. Adv. Opt. Mater. 9, 2100789 (2021).

    Article  CAS  Google Scholar 

  27. Zhao, J., Ma, C., Rusing, M. & Mookherjea, S. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett. 124, 163603 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Lehr, D. et al. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate. Nano Lett. 15, 1025–1030 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Wang, J. et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express 23, 23072–23078 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Shur, V. Y., Akhmatkhanov, A. R. & Baturin, I. S. Micro- and nano-domain engineering in lithium niobate. Appl. Phys. Lett. 2, 040604 (2015).

    Google Scholar 

  31. Ying, C. Y. J. et al. Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals. Laser Photonics Rev. 6, 526–548 (2012).

    Article  ADS  CAS  Google Scholar 

  32. Sun, J., Hao, Y. X., Zhang, L., Xu, J. J. & Zhu, S. N. Brief review of lithium niobate crystal and its applications. J. Synth. Cryst. 49, 947–964 (2020).

    CAS  Google Scholar 

  33. Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    Article  ADS  CAS  Google Scholar 

  34. Cao, B. et al. Efficient generation of ultra-broadband parametric fluorescence using chirped quasi-phase-matched waveguide devices. Opt. Express 29, 21615–21628 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Yudistira, D., Janner, D., Benchabane, S. & Pruneri, V. Low power consumption integrated acoustooptic filter in domain inverted LiNbO3 superlattice. Opt. Express 18, 27181–27190 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Rosenman, G., Urenski, P., Agronin, A., Rosenwaks, Y. & Molotskii, M. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Appl. Phys. Lett. 82, 103–105 (2003).

    Article  ADS  CAS  Google Scholar 

  37. Yamada, M. & Kishima, K. Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature. Electron. Lett. 27, 828–829 (1991).

    Article  ADS  CAS  Google Scholar 

  38. Shur, V. Y. Domain nanotechnology in ferroelectrics: nano-domain engineering in lithium niobate crystals. Ferroelectrics 373, 1–10 (2010).

    Article  CAS  Google Scholar 

  39. Shur, V. Y. et al. Self-assembled shape evolution of the domain wall and formation of nanodomain wall traces induced by multiple IR laser pulse irradiation in lithium niobate. J. Appl. Phys. 127, 094103 (2020).

    Article  ADS  CAS  Google Scholar 

  40. Shur, V. Y. et al. Dimensionality increase of ferroelectric domain shape by pulse laser irradiation. Acta Mater. 219, 117270 (2021).

    Article  CAS  Google Scholar 

  41. Rodenas, A. et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photon. 13, 105–109 (2018).

    Article  ADS  CAS  Google Scholar 

  42. Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon. 2, 219–225 (2008).

    Article  ADS  CAS  Google Scholar 

  43. Huang, X. J. et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photon. 14, 82–88 (2019).

    Article  ADS  CAS  Google Scholar 

  44. Yang, W., Kazansky, P. G. & Svirko, Y. P. Non-reciprocal ultrafast laser writing. Nat. Photon. 2, 99–104 (2008).

    Article  ADS  CAS  Google Scholar 

  45. Wei, D. Z. et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photon. 12, 596–601 (2018).

    Article  ADS  CAS  Google Scholar 

  46. Xu, T. X. et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat. Photon. 12, 591–595 (2018).

    Article  ADS  CAS  Google Scholar 

  47. Chen, X. et al. Ferroelectric domain engineering by focused infrared femtosecond pulses. Appl. Phys. Lett. 107, 141102 (2015).

    Article  ADS  CAS  Google Scholar 

  48. Imbrock, J., Hanafi, H., Ayoub, M. & Denz, C. Local domain inversion in MgO-doped lithium niobate by pyroelectric field-assisted femtosecond laser lithography. Appl. Phys. Lett. 113, 252901 (2018).

    Article  ADS  CAS  Google Scholar 

  49. Zhang, Y., Sheng, Y., Zhu, S. N., Xiao, M. & Krolikowski, W. Nonlinear photonic crystals: from 2D to 3D. Optica 8, 372–381 (2021).

    Article  ADS  Google Scholar 

  50. Zhu, B., Liu, H., Chen, Y. & Chen, X. High conversion efficiency second-harmonic beam shaping via amplitude-type nonlinear photonic crystals. Opt. Lett. 45, 220–223 (2019).

    Article  ADS  Google Scholar 

  51. Steigerwald, H., Cube, F. V., Luedtke, F., Dierolf, V. & Buse, K. Influence of heat and UV light on the coercive field of lithium niobate crystals. Appl. Phys. B 101, 535–539 (2010).

    Article  ADS  CAS  Google Scholar 

  52. Saltiel, S. M. et al. Nonlinear diffraction from a virtual beam. Phys. Rev. Lett. 104, 083902 (2010).

    Article  ADS  PubMed  CAS  Google Scholar 

  53. Bhatt, R. et al. Studies on nonlinear optical properties of ferroelectric MgO-LiNbO3 single crystals. Ferroelectrics 323, 165–169 (2005).

    Article  CAS  Google Scholar 

  54. Reddy, J. N. B., Elizabeth, S., Bhat, H. L., Venkatram, N. & Rao, D. N. Influence of non-stoichiometric defects on nonlinear absorption and refraction in Nd:Zn co-doped lithium niobate. Opt. Mater. 31, 1022–1026 (2009).

    Article  ADS  CAS  Google Scholar 

  55. Maekawa, S. et al. in Physics of Transition Metal Oxides (eds Cardona, M. et al.) 323–331 (Springer, 2004).

  56. Ashcroft, N. W. & Mermin, N. D. in Solid State Physics (ed. Crane, D. G.) 253–258 (Harcourt College, 1976).

  57. Kosorotov, V. F., Kremenchugskij, L. S., Levash, L. V. & Shchedrina, L. V. Tertiary pyroelectric effect in lithium niobate and lithium tantalate crystals. Ferroelectrics 70, 27–37 (1986).

    Article  CAS  Google Scholar 

  58. Bo, H. F. et al. Temperature-dependent ferroelectric properties of near stoichiometric lithium niobate single crystal. Appl. Phys. A 124, 691 (2018).

    Article  ADS  CAS  Google Scholar 

  59. Fridkin, V. M. & Ducharme, S. General features of the intrinsic ferroelectric coercive field. Phys. Solid State 43, 1320–1324 (2001).

    Article  ADS  CAS  Google Scholar 

  60. Ishizuki, H., Shoji, I. & Taira, T. Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature. Appl. Phys. Lett. 82, 4062–4064 (2003).

    Article  ADS  CAS  Google Scholar 

  61. Lee, W. H. Binary computer-generated holograms. Appl. Opt. 18, 3661–3669 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Shapira, A., Shiloh, R., Juwiler, I. & Arie, A. Two-dimensional nonlinear beam shaping. Opt. Lett. 37, 2136–2138 (2012).

    Article  ADS  PubMed  Google Scholar 

  63. Kogelnik, H. & Li, T. Laser beams and resonators. Appl. Opt. 5, 1550–1567 (1966).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Soergel, E. Piezoresponse force microscopy (PFM). J. Phys. D 44, 464003 (2011).

    Article  ADS  CAS  Google Scholar 

  65. Sheng, Y. et al. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt. Express 18, 16539–16545 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Huang, X. Y. et al. Second-harmonic interference imaging of ferroelectric domains through a scanning microscope. J. Phys. D 50, 485105 (2017).

    Article  CAS  Google Scholar 

  67. Zhu, Y. Y., Chen, Y. F., Zhu, S. N., Qin, Y. Q. & Ming, N. B. Acoustic superlattices and ultrasonic waves excited by crossed-field scheme. Mater. Lett. 28, 503–505 (1996).

    Article  CAS  Google Scholar 

  68. Anhorn, M., Engan, H. E. & Ronnekleiv, A. New saw velocity measurements on y-cut LiNbO3. In IEEE 1987 Ultrasonics Symposium (ed. McAvoy, B. R.) 279–284 (IEEE, 1987).

Download references

Acknowledgements

This work was supported by the National Key R&D Programme of China (grant nos. 2021YFA1400803 and 2017YFA0303703), the National Natural Science Foundation of China (NSFC) (grant nos. 91950206, 92163216, 11874213, 51725203, U1932115, 51721001 and 62005164), the Science and Technology Commission of Shanghai Municipality (grant no. 21DZ1100500), the Shanghai Municipal Science and Technology Major Project, the Shanghai Frontiers Science Centre Programme (grant no. 2021-2025 No. 20), the Zhangjiang National Innovation Demonstration Zone (grant no. ZJ2019-ZD-005), the Shanghai Rising-Star Program (grant no. 20QA1404100), the National Key Scientific Instrument and Equipment Development Project (grant no. 61927814) and the Fundamental Research Funds for the Central Universities (grant no. 021314380191).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. conceived the idea and supervised the project with M.X. X.X., T.W., P.C., C.Z, J.M., D. Wei, H.W., B.N. and X.F. performed the experiments and numerical simulations under the guidance of Y.Z., S.Z., D. Wu, M.G. and M.X. All authors contributed to the discussion of experimental results.

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Airán Ródenas Seguí and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Femtosecond laser writing system for LiNbO3 nanodomain engineering.

The z-polarized laser beam is focused into the sample along the x direction.

Extended Data Fig. 2 The theoretical simulation of temperature (a), temperature gradient (b), the z-component of the thermoelectric field (c), and the pyroelectric field (d).

The marked area in c indicates the electric field above the threshold value. In d, the black arrow shows the laser writing direction (v = 10 μm/s) and the white arrows indicate the direction of pyroelectric field. The input laser propagates along the x direction with its polarization along the z direction.

Extended Data Fig. 3 The procedures to fabricate nanodomains along the x, y, and z directions, through laser poling-erasing strategy.

a, The laser writing process to fabricate LiNbO3 nanodomains along the y direction. First, we move the laser beam along the –z direction to write a domain line. Then, we shift the LiNbO3 sample by a designed distance d along the +y (or -y) direction. Finally, we remove part of the created domain by moving the laser beam back along the +z direction. The remaining domain width along the y direction is d (a). By shifting the LiNbO3 sample along the x direction, similar laser writing strategy is applied to reduce the domain linewidth along the x direction (c). b, The procedure to produce nanosized domain along the z direction, we first move the laser beam along the y direction to write a domain line. Then, we apply the laser eraser point by point to reduce the domain width along the z direction. d, The fabrication process of a nanodomain array.

Extended Data Fig. 4 The dependence of domain width on the writing direction.

a, Schematic diagram of laser writing along an angle of θ relative to the -z direction. a and b define the effective thermoelectric field. The achieved domain linewidth satisfies \({d}^{{\prime} }=\sqrt{{a}^{2}{{\rm{c}}{\rm{o}}{\rm{s}}}^{2}\theta +{b}^{2}{{\rm{s}}{\rm{i}}{\rm{n}}}^{2}\theta }\). b, The calculated and measured domain widths at different θ.

Source data

Extended Data Fig. 5 SH generations in 2D and 3D periodic domain structures.

a, The typical QPM configuration45. b, c, The QPM SH patterns in 2D and 3D LiNbO3 domain structures, respectively. The intensities of the SH spots depend on whether the QPM condition is fully satisfied. At input fundamental wavelengths of 755 nm, 742 nm, and 726 nm, the non-collinear QPM SH generations from 2D domain array are realized by involving \({{\boldsymbol{G}}}_{0,1,-1}{/{\boldsymbol{G}}}_{0,1,1}\), \({{\boldsymbol{G}}}_{0,1,-2}{/\overrightarrow{G}}_{0,1,2}\), and \({{\boldsymbol{G}}}_{0,1,-3}{/{\boldsymbol{G}}}_{0,1,3}\), respectively. The corresponding SH pattern presents two symmetric bright spots (b). In comparison to 2D case, the number of the SH spots from 3D domain structure clearly increases because the QPM condition is simultaneously satisfied by more reciprocal vectors (c). Notably, the central SH spot is bright because it is produced through a collinear SH generation process that has a much longer interaction length than those under non-collinear SH generation configurations. d, e, The measured and calculated emitting angles of the output SH beams.

Extended Data Fig. 6 SH HG-mode generation in a 3D nonlinear grating.

a, A 3D χ(2)-grating structure for SH \({{\rm{H}}{\rm{G}}}_{11}\) beam generation under 3D QPM condition66. b, The measured dependence of the SH power at the \({1}^{{st}}\) order on the fundamental wavelength. The 3D QPM condition is satisfied at 768 nm. The deviation in b can be attributed to the broad bandwidth of the input femtosecond laser and the limited period number of the domain structure.

Source data

Extended Data Fig. 7 Stability test of LiNbO3 domain structures.

a, The PFM image of a LiNbO3 domain structure prepared by laser writing in Oct. 2019. After being kept at room temperature for over two years, one can clearly observe the domain structure (c). We also put the ruler-shaped nanodomain structure (b) in a tube furnace for an annealing treatment. The sample temperature is increased to 300 °C at a heating rate of about 10 °C/min. After 2-h heat treatment at 300 °C, the sample is naturally cooled down to room temperature. The domain structure successfully survives after such annealing process (d). The domain structures have no significant changes after a two-year storage or an annealing treatment.

Extended Data Fig. 8 Surface acoustic waves (SAW) generation in LiNbO3 nanodomain arrays.

a, The diagram of SAW device based on LiNbO3 nanodomain array. In such LiNbO3 domain structure (also called acoustic superlattice), the sign of the piezoelectric coefficients is periodically switched, which can produce SAW by using uniform electrodes. The SAW resonant frequency is given by67 \(f=\frac{v}{\lambda }\), where \(v\) is the SAW velocity, and \(\lambda \) is the acoustic wavelength that is equal to the period of the LiNbO3 domain structure. b, The calculated dependence of SAW resonant frequency on the domain period. The SAW velocity is 3718 m/s68. For the nanodomain structures with periods of 100 nm and 50 nm, the SAW frequencies reach \(37.2\,{\rm{G}}{\rm{H}}{\rm{z}}\) and \(74.4\,{\rm{G}}{\rm{H}}{\rm{z}}\), respectively.

Extended Data Fig. 9 Comparison of laser writing with/without the use of a drain line.

The solid white line indicates the drain line. When laser writing starts from the drain line, one can produce a LiNbO3 domain line (left). In contrast, under the same laser writing parameters, one cannot write LiNbO3 domains without the use of drain line. The laser writing track is marked by the dashed white line (right). In experiment, we use conductive atomic force microscopy to measure the electric conductivity of drain line, which is several orders of magnitude higher than the value of LiNbO3 crystal.

Extended Data Fig. 10 The linear diffraction patterns from the gratings in Fig. 4a–c at an input wavelength of 690 nm.

The non-zero diffraction order can be barely observed, which indicates no significant change in the refractive index.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Wang, T., Chen, P. et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 609, 496–501 (2022). https://doi.org/10.1038/s41586-022-05042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05042-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing