Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heterodimensional superlattice with in-plane anomalous Hall effect

An Author Correction to this article was published on 13 October 2022

This article has been updated


Superlattices—a periodic stacking of two-dimensional layers of two or more materials—provide a versatile scheme for engineering materials with tailored properties1,2. Here we report an intrinsic heterodimensional superlattice consisting of alternating layers of two-dimensional vanadium disulfide (VS2) and a one-dimensional vanadium sulfide (VS) chain array, deposited directly by chemical vapour deposition. This unique superlattice features an unconventional 1T stacking with a monoclinic unit cell of VS2/VS layers identified by scanning transmission electron microscopy. An unexpected Hall effect, persisting up to 380 kelvin, is observed when the magnetic field is in-plane, a condition under which the Hall effect usually vanishes. The observation of this effect is supported by theoretical calculations, and can be attributed to an unconventional anomalous Hall effect owing to an out-of-plane Berry curvature induced by an in-plane magnetic field, which is related to the one-dimensional VS chain. Our work expands the conventional understanding of superlattices and will stimulate the synthesis of more extraordinary superstructures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth process and optical images of the VS2–VS superlattice.
Fig. 2: Atomic structure of the VS2–VS superlattice.
Fig. 3: Detailed analyses of the VS2–VS superlattice.
Fig. 4: Transport measurements of the VS2–VS superlattice.

Data availability

Source data are provided with this paper.

Change history


  1. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Esaki, L. & Chang, L. L. New transport phenomenon in a semiconductor “superlattice”. Phys. Rev. Lett. 33, 495–498 (1974).

    Article  ADS  CAS  Google Scholar 

  3. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  ADS  CAS  Google Scholar 

  4. Björk, M. T. et al. One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002).

    Article  ADS  Google Scholar 

  5. Dumestre, F., Chaudret, B., Amiens, C., Renaud, P. & Fejes, P. Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2. Science 303, 821–823 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Ryu, Y. K., Frisenda, R. & Castellanos-Gomez, A. Superlattices based on van der Waals 2D materials. Chem. Commun. 55, 11498–11510 (2019).

    Article  CAS  Google Scholar 

  7. Hu, M. & Poulikakos, D. Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Lett. 12, 5487–5494 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Davies, R. A., Kelly, M. J., Kerr, T. M., Hetherington, C. J. D. & Humphreys, C. J. Geometric and electronic structure of a semiconductor superlattice. Nature 317, 418–419 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Silbernagel, B. G., Levy, R. B. & Gamble, F. R. Magnetic properties of V5S8: an NMR study. Phys. Rev. B 11, 4563–4570 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    Article  CAS  Google Scholar 

  12. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Li, X.-B., Chen, N.-K., Wang, X.-P. & Sun, H.-B. Phase-change superlattice materials toward low power consumption and high density data storage: microscopic picture, working principles, and optimization. Adv. Funct. Mater. 28, 1803380 (2018).

    Article  Google Scholar 

  14. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Zhong, Y. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 366, 1379–1384 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Yang, J. et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Ji, Q. et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett. 17, 4908–4916 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Mitchson, G. et al. Structural changes in 2D BiSe bilayers as n increases in (BiSe)1+δ(NbSe2)n (n = 1–4) heterostructures. ACS Nano 10, 9489–9499 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Li, Z. et al. Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc. 139, 16398–16404 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Georgiou, T. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Hou, Y., Kim, J. & Wu, R. Magnetizing topological surface states of Bi2Se3 with a CrI3 monolayer. Sci. Adv. 5, eaaw1874 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Chang, L. L. & Esaki, L. Semiconductor superlattices by MBE and their characterization. Prog. Cryst. Growth Charact. 2, 3–14 (1979).

    Article  CAS  Google Scholar 

  27. Yao, J. et al. Optical transmission enhancement through chemically tuned two-dimensional bismuth chalcogenide nanoplates. Nat. Commun. 5, 5670 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Devarakonda, A. et al. Clean 2D superconductivity in a bulk van der Waals superlattice. Science 370, 231–236 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Niu, J. et al. Anomalous Hall effect and magnetic orderings in nanothick V5S8. Phys. Rev. B 96, 075402 (2017).

  31. Hardy, W. J. et al. Thickness-dependent and magnetic-field-driven suppression of antiferromagnetic order in thin V5S8 single crystals. ACS Nano 10, 5941–5946 (2016).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  32. Li, S. et al. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 17, 535–542 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Yuan, J. et al. Facile synthesis of single crystal vanadium disulfide nanosheets by chemical vapor deposition for efficient hydrogen evolution reaction. Adv. Mater. 27, 5605–5609 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Liang, S. et al. Experimental tests of the chiral anomaly magnetoresistance in the Dirac–Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8, 031002 (2018).

    CAS  Google Scholar 

  35. Wang, Y. et al. Antisymmetric linear magnetoresistance and the planar Hall effect. Nat. Commun 11, 216 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang, B. et al. Chirality-dependent Hall effect and antisymmetric magnetoresistance in a magnetic Weyl semimetal. Phys. Rev. Lett. 126, 236601 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. De Vries, A. B. & Haas, C. Magnetic susceptibility and nuclear magnetic resonance of vanadium sulfides. J. Phys. Chem. Solids 34, 651–659 (1973).

    Article  ADS  Google Scholar 

  38. Nozaki, H., Ishizawa, Y., Saeki, M. & Nakahira, M. Electrical properties of V5S8 single crystals. Phys. Lett. A 54, 29–30 (1975).

    Article  ADS  Google Scholar 

  39. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  40. Liu, X., Hsu, H. C. & Liu, C. X. In-plane magnetization-induced quantum anomalous Hall effect. Phys. Rev. Lett. 111, 086802 (2013).

    Article  ADS  PubMed  Google Scholar 

  41. Fang, C., Gilbert, M. J. & Bernevig, B. A. Bulk topological invariants in noninteracting point group symmetric insulators. Phys. Rev. B 86, 115112 (2012).

    Article  ADS  Google Scholar 

  42. Liu, Z. et al. Intrinsic quantum anomalous Hall effect with in-plane magnetization: searching rule and material prediction. Phys. Rev. Lett. 121, 246401 (2018).

    Article  ADS  PubMed  Google Scholar 

Download references


The work was supported by: the National Key R&D Program of China (grant number 2020YFA0308800), the NSF of China (grant numbers 12074009, 11774009, 62174013, 12061131102 and 11734003), BIT (number 2021CX11013) and the National Key R&D Program of China (2017YFA0206301); the National Research Foundation, Singapore, under its Competitive Research Programme (NRF-CRP22-2019-0007 and NRF-CRP22-2019-0004), under its NRF-ISF joint research programme (NRF2020-NRF-ISF004-3520); and the Ministry of Education, Singapore, under its AcRF Tier 3 Programme ‘Geometrical Quantum Materials’ (MOE2018-T3-1-002). H.D., and W.G. acknowledge funding from the National Key Basic Research Program of China (2017YFB0701603) and NSFC (number 51971037). We thank X. Dai and H. M. Weng for discussions and their preliminary attempts on ab initio calculations. Y.-C.L. and K.S. acknowledge the JSPS-KAKENHI (JP16H06333 and JP22H05478), (18K14119), the JST-CREST programme (JPMJCR20B1, JMJCR20B5 and JPMJCR1993), the JSPS A3 Foresight Program, and the Kazato Research Encouragement Prize. Y.G. acknowledges funding from the Innovation Program of Shanghai Municipal Education Commission (number 2019-01-07-00-09-E00020), Shanghai Municipal Science and Technology Commission (18JC1412800). Jianhui Zhou was supported by the High Magnetic Field Laboratory of Anhui Province. Yugui Yao acknowledges the Strategic Priority Research Program of Chinese Academy of Sciences (grant number XDB30000000).

Author information

Authors and Affiliations



Jiadong Zhou, W.Z., Y.-C.L. and J.C. contributed equally to this work. W.Z. and X.W. initiated the project and observed the novel Hall effect. Jiadong Zhou and Z.L. proposed the heterodimensional superlattice concept and coordinated the project. Jiadong Zhou and Y.Z. synthesized the superlattice and carried out the Raman and atomic force microscopy measurements. Y.Z. analysed the XPS data. Yuan Yao carried out preliminary STEM experiments. Y.-C.L. and K.S. performed the STEM and EELS measurements. W.Z., B.J. and X.W. carried out the device measurements. Yugui Yao, Y.W. and Y. Hou discussed the structure. Yugui Yao, X.W., Jianhui Zhou, J.C. and Jiadong Zhou discussed the theory calculation process. H.D., W.G. J.C., Jianhui Zhou, W.J. and Yugui Yao performed the theory calculation. J.C., Jianhui Zhou, W.J. and Yugui Yao performed the calculations. X.C. and Y. Huang helped to perform the FIB. J.S. performed the SHG measurements. W.Z. and S.S.P.P. performed the MOKE measurement. B.T., B.L., Q.F. and C.Z. discussed the SHG. All authors contributed to the discussion of the results.

Corresponding authors

Correspondence to Jiadong Zhou, Yugui Yao, Kazu Suenaga, Xiaosong Wu or Zheng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Kai Xiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–31, Tables 1–4 and References.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Zhang, W., Lin, YC. et al. Heterodimensional superlattice with in-plane anomalous Hall effect. Nature 609, 46–51 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing