Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dairying, diseases and the evolution of lactase persistence in Europe

An Author Correction to this article was published on 30 August 2022

This article has been updated

Abstract

In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions2,3. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation—proxies for these drivers—provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographical and temporal distribution of archaeological milk fat residues in potsherds.
Fig. 2: Regional variation in milk use in prehistoric Europe.
Fig. 3: Regional variation in prehistoric LP allele frequencies in Europe.
Fig. 4: LP variant association with health outcomes.

Similar content being viewed by others

Data availability

Data for running the aDNA analyses are available from https://github.com/ydiekmann/Evershed_Nature_2022. KML files, a summary of archaeological milk residue data, ecological proxy variables and a summary of radiocarbon dates are available from https://github.com/AdrianTimpson/2020-03-03523A. UK Biobank data are available from: https://www.ukbiobank.ac.uk/.

Code availability

R code for running the aDNA analyses is available from https://github.com/ydiekmann/Evershed_Nature_2022. Open-source R Code for running the UK Biobank analyses under MIT license are available from https://github.com/MRCIEU/lp-coevolution. R code for the generation of Figs. 1, 2, 3 and  Extended Data Fig. 1 are available from https://github.com/AdrianTimpson/2020-03-03523A.

Change history

References

  1. Sabeti, P. C. et al. Positive natural selection in the human lineage. Science 312, 1614 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Evershed, R. P. et al. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 455, 528–531 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Debono Spiteri, C. et al. Regional asynchronicity in dairy production and processing in early farming communities of the northern Mediterranean. Proc. Natl Acad. Sci. USA 113, 13594–13599 (2016).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  4. Collins, R. What makes UK Biobank special? Lancet 379, 1173–1174 (2012).

    Article  PubMed  Google Scholar 

  5. Allen, N. E., Sudlow, C., Peakman, T. & Collins, R. UK Biobank Data: come and get it. Sci. Transl. Med. 6, 224ed224–224ed224 (2014).

    Article  Google Scholar 

  6. Gerbault, P. et al. Evolution of lactase persistence: an example of human niche construction. Philos. Trans. R. Soc. Lond. B 366, 863–877 (2011).

    Article  CAS  Google Scholar 

  7. Food and Agriculture Organization of the United Nations. Crops and Livestock Products (FAOSTAT) http://www.fao.org/faostat/en/#data/QA (accessed 10 November 2021).

  8. Vigne, J.-D. & Helmer, D. Was milk a “secondary product” in the Old World Neolithisation process? Its role in the domestication of cattle, sheep and goats. Anthropozoologica 42, 9–40 (2007).

    Google Scholar 

  9. Roffet-Salque, M., Gillis, R., Evershed, R. P. & Vigne, J.-D. in Hybrid Communities: Biosocial Approaches to Domestication and Other Trans-Species Relationships (eds Stépanoff, C. & Vigne, J.D.) 127–143 (Routledge, 2018).

  10. Gillis, R. et al. Sophisticated cattle dairy husbandry at Borduşani-Popină (Romania, fifth millennium BC): the evidence from complementary analysis of mortality profiles and stable isotopes. World Archaeol. 45, 447–472 (2013).

    Article  Google Scholar 

  11. Ethier, J. et al. Earliest expansion of animal husbandry beyond the Mediterranean zone in the sixth millennium BC. Sci. Rep. 7, 7146 (2017).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  12. Salque, M. et al. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493, 522–525 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Gillis, R. E. et al. The evolution of dual meat and milk cattle husbandry in Linearbandkeramik societies. Proc. R. Soc. B 284, 20170905 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Balasse, M. & Tresset, A. Early weaning of Neolithic domestic cattle (Bercy, France) revealed by intra-tooth variation in nitrogen isotope ratios. J. Archaeol. Sci. 29, 853–859 (2002).

    Article  Google Scholar 

  15. Whelton, H. L., Roffet-Salque, M., Kotsakis, K., Urem-Kotsou, D. & Evershed, R. P. Strong bias towards carcass product processing at Neolithic settlements in northern Greece revealed through absorbed lipid residues of archaeological pottery. Quat. Int. 496, 127–139 (2018).

    Article  Google Scholar 

  16. Copley, M. S. et al. Direct chemical evidence for widespread dairying in prehistoric Britain. Proc. Natl Acad. Sci. USA 100, 1524–1529 (2003).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Cramp, L. J. E. et al. Immediate replacement of fishing with dairying by the earliest farmers of the northeast Atlantic archipelagos. Proc. R. Soc. B 281, 20132372 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smyth, J. & Evershed, R. P. Milking the megafauna: using organic residue analysis to understand early farming practice. Environ. Archaeol. 21, 214–229 (2016).

    Article  Google Scholar 

  19. Charlton, S. et al. New insights into Neolithic milk consumption through proteomic analysis of dental calculus. Archaeol. Anthropol. Sci. 11, 6183–6196 (2019).

    Article  Google Scholar 

  20. Craig, O. E. et al. Ancient lipids reveal continuity in culinary practices across the transition to agriculture in Northern Europe. Proc. Natl Acad. Sci. USA 108, 17910–17915 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Cramp, L. J. E. et al. Neolithic dairy farming at the extreme of agriculture in Northern Europe. Proc. R. Soc. B 281, 20140819 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pääkkönen, M., Holmqvist, E., Bläuer, A., Evershed, R. P. & Asplund, H. Diverse economic patterns in the North Baltic Sea region in the Late Neolithic and Early Metal periods. Eur. J. Archaeol. 23, 4–21 (2019).

    Article  Google Scholar 

  23. Burger, J., Kirchner, M., Bramanti, B., Haak, W. & Thomas, M. G. Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proc. Natl Acad. Sci. USA 104, 3736–3741 (2007).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Sverrisdóttir, O. Ó. et al. Direct estimates of natural selection in Iberia indicate calcium absorption was not the only driver of lactase persistence in Europe. Mol. Biol. Evol. 31, 975–983 (2014).

    Article  PubMed  CAS  Google Scholar 

  25. Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Brace, S. et al. Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 3, 765–771 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Burger, J. et al. Low prevalence of lactase persistence in Bronze Age Europe indicates ongoing strong selection over the last 3,000 years. Curr. Biol. 30, 4307–4315 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Itan, Y., Powell, A., Beaumont, M. A., Burger, J. & Thomas, M. G. The origins of lactase persistence in Europe. PLoS Comput. Biol. 5, e1000491 (2009).

    Article  MathSciNet  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  30. Enattah, N. S. et al. Identification of a variant associated with adult-type hypolactasia. Nat. Genet. 30, 233–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Itan, Y., Jones, B., Ingram, C., Swallow, D. & Thomas, M. A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evol. Biol. 10, 36 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Flatz, G. & Rotthauwe, H. Lactose nutrition and natural selection. Lancet 302, 76–77 (1973).

    Article  Google Scholar 

  33. Cubas, M. et al. Latitudinal gradient in dairy production with the introduction of farming in Atlantic Europe. Nat. Commun. 11, 2036 (2020).

  34. Klopfstein, S., Currat, M. & Excoffier, L. The fate of mutations surfing on the wave of a range expansion. Mol. Biol. Evol. 23, 482–490 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Gerbault, P., Moret, C., Currat, M. & Sanchez-Mazas, A. Impact of selection and demography on the diffusion of lactase persistence. PLoS ONE 4, e6369 (2009).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  36. Cook, G. C. & al-Torki, M. T. High intestinal lactase concentrations in adult Arabs in Saudi Arabia. Br. Med. J. 3, 135–136 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Davey Smith, G. et al. Lactase persistence-related genetic variant: population substructure and health outcomes. Eur. J. Hum. Genet. 17, 357–367 (2009).

    Article  CAS  Google Scholar 

  38. Cederlund, A. et al. Lactose in human breast milk an inducer of innate immunity with implications for a role in intestinal homeostasis. PLoS ONE https://doi.org/10.1371/journal.pone.0053876 (2013).

  39. Gibson, P. R. History of the low FODMAP diet. J. Gastroenterol. Hepatol. 32, 5–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Walker, C. & Thomas, M. G. in Lactose: Evolutionary Role, Health Effects, and Applications (eds Paques, M. & Lindner, C.) 1–48 (Elsevier, 2019).

  41. Simoons, F. Primary adult lactose intolerance and the milking habit: a problem in biologic and cultural interrelations. II. A culture historical hypothesis. Dig. Dis. Sci. 15, 695–710 (1970).

    Article  CAS  Google Scholar 

  42. McCracken, R. D. Lactase deficiency: an example of dietary evolution. Curr. Anthropol. 12, 479–517 (1971).

    Article  Google Scholar 

  43. Holden, C. & Mace, R. Phylogenetic analysis of the evolution of lactose digestion in adults. Hum. Biol. 69, 605–628 (1997).

    CAS  PubMed  Google Scholar 

  44. Ingram, C. J. E. et al. A novel polymorphism associated with lactose tolerance in Africa: multiple causes for lactase persistence? Hum. Genet. 120, 779–788 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Tishkoff, S. A. et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 39, 31–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Joslin, S. E. K. et al. Association of the lactase persistence haplotype block with disease risk in populations of European descent. Front. Genet. 11, 1346 (2020).

    Article  CAS  Google Scholar 

  47. Dudd, S. N. & Evershed, R. P. Direct demonstration of milk as an element of archaeological economies. Science 282, 1478–1481 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Dunne, J. et al. First dairying in green Saharan Africa in the fifth millennium BC. Nature 486, 390–394 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Manning, K. et al. The origins and spread of stock-keeping: the role of cultural and environmental influences on early Neolithic animal exploitation in Europe. Antiquity 87, 1046–1059 (2013).

    Article  Google Scholar 

  50. Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 2486 (2013).

    Article  PubMed  ADS  CAS  Google Scholar 

  51. Howe, L. J. et al. Genetic evidence for assortative mating on alcohol consumption in the UK Biobank. Nat. Commun. 10, 5039 (2019).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  52. Rodriguez, S., Gaunt, T. R. & Day, I. N. M. Hardy–Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am. J. Epidemiol. 169, 505–514 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Simmons, J. S., Whayne, T. F., Anderson, G. W. & Horack, H. M. Global Epidemiology: A Geography of Disease and Sanitation Vol. 1 (William Heineman, 1944).

  54. Bai, Z. et al. Global environmental costs of China's thirst for milk. Glob. Change Biol. 24, 2198–2211 (2018).

    Article  ADS  Google Scholar 

  55. Simoons, F. Primary adult lactose intolerance and the milking habit: a problem in biological and cultural interrelations. I. Review of the medical research. Dig. Dis. Sci. 14, 819–836 (1969).

    Article  CAS  Google Scholar 

  56. Bayless, T. M., Paige, D. M. & Ferry, G. D. Lactose intolerance and milk drinking habits. Gastroenterology 60, 605–608 (1971).

    Article  CAS  PubMed  Google Scholar 

  57. Szilagyi, A., Walker, C. & Thomas, M. G. in Lactose: Evolutionary Role, Health Effects, and Applications (eds Paques, M. & Lindner, C.) 113–153 (Elsevier, 2019).

  58. Mendelian Randomization of Dairy Consumption Working Group. Dairy consumption and body mass index among adults: Mendelian randomization analysis of 184802 individuals from 25 studies. Clin. Chem. 64, 183–191 (2018).

    Article  CAS  Google Scholar 

  59. Almon, R., Álvarez-León, E. E. & Serra-Majem, L. Association of the European lactase persistence variant (LCT-13910 C>T polymorphism) with obesity in the Canary Islands. PLoS ONE https://doi.org/10.1371/journal.pone.0043978 (2012).

  60. Hartwig, F. P., Horta, B. L., Davey Smith, G., de Mola, C. L. & Victora, C. G. Association of lactase persistence genotype with milk consumption, obesity and blood pressure: a Mendelian randomization study in the 1982 Pelotas (Brazil) Birth Cohort, with a systematic review and meta-analysis. Int. J. Epidemiol. 45, 1573–1587 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Qin, L.-Q., He, K. & Xu, J.-Y. Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int. J. Food Sci. Nutr. 60, 330–340 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Wiley, A. The evolution of lactase persistence: milk consumption, insulin-like growth factor I, and human life-history parameters. Q. Rev. Biol. 93, 319–345 (2018).

    Article  Google Scholar 

  63. Campbell, C. D. et al. Demonstrating stratification in a European American population. Nat. Genet. 37, 868–872 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Bergholdt, H. K. M., Nordestgaard, B. G., Varbo, A. & Ellervik, C. Milk intake is not associated with ischaemic heart disease in observational or Mendelian randomization analyses in 98,529 Danish adults. Int. J. Epidemiol. 44, 587–603 (2015).

    Article  PubMed  Google Scholar 

  65. Bocquet-Appel, J.-P. When the world's population took off: the springboard of the Neolithic demographic transition. Science 333, 560–561 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Loog, L. et al. Estimating mobility using sparse data: application to human genetic variation. Proc. Natl Acad. Sci. USA 114, 12213–12218 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vorou, R., Papavassiliou, V. & Tsiodras, S. Emerging zoonoses and vector-borne infections affecting humans in Europe. Epidemiol. Infect. 135, 1231–1247 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  69. Rice, A. L., Sacco, L., Hyder, A. & Black, R. E. Malnutrition as an underlying cause of childhood deaths associated with infectious diseases in developing countries. Bull. World Health Org. 78, 1207–1221 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Colledge, S., Conolly, J., Crema, E. & Shennan, S. Neolithic population crash in northwest Europe associated with agricultural crisis. Quat. Res. 92, 686–707 (2019).

  71. Manning, K. The cultural evolution of Neolithic Europe. EUROEVOL Dataset 2: Zooarchaeological data. J. Open Archaeol. Data 5, e3 (2016).

  72. Chessa, B. et al. Revealing the history of sheep domestication using retrovirus integrations. Science 324, 532 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Karesh, W. B., Cook, R. A., Bennett, E. L. & Newcomb, J. Wildlife trade and global disease emergence. Emerg. Infect. Dis. 11, 1000 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chomel, B. B., Belotto, A. & Meslin, F.-X. Wildlife, exotic pets, and emerging zoonoses. Emerg. Infect. Dis. 13, 6 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schibler, J., Jacomet, S., Hüster-Plogmann, H. & Brombacher, C. Economic crash in the 37th and 36th centuries cal. BC in Neolithic lake shore sites in Switzerland. Anthropozoologica 25, 553–570 (1997).

    Google Scholar 

  76. He, Y., Yang, X., Xia, J., Zhao, L. & Yang, Y. Consumption of meat and dairy products in China: a review. Proc. Nutr. Soc. 75, 385–391 (2016).

    Article  PubMed  Google Scholar 

  77. Mak, V. S. W. Milk Craze: Body, Science, and Hope in China (Univ. of Hawai'i Press, 2021).

  78. Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731–743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Qin, Y. et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat. Genet. 54, 134–142 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Paine, R. R. & Boldsen, J. L. in The Evolution of Human Life History School for Advanced Research (eds Hawkes, K. & Paine, R. R.) 307–330 (School of American Research Press, 2006).

  81. Stackhouse P. W. et al. POWER Release 8.0.1 (with GIS Applications) Methodology (Data Parameters, Sources, & Validation) (NASA, 2018).

  82. Lieberman, M. & Lieberman, D. Lactase deficiency: a genetic mechanism which regulates the time of weaning. Am. Nat. 112, 625–627 (1978).

    Article  CAS  Google Scholar 

  83. Ingold, T. Hunters, Pastoralists and Ranchers: Reindeer Economies and Their Transformations (Cambridge Univ. Press, 1980).

  84. Outram, A. K. et al. The earliest horse harnessing and milking. Science 323, 1332–1335 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  85. Breu, A., Gómez-Bach, A., Heron, C., Rosell-Melé, A. & Molist, M. Variation in pottery use across the Early Neolithic in the Barcelona plain. Archaeol. Anthropol. Sci. 13, 53 (2021).

    Article  Google Scholar 

  86. Brychova, V. et al. Animal exploitation and pottery use during the early LBK phases of the Neolithic site of Bylany (Czech Republic) tracked through lipid residue analysis. Quat. Int. 574, 91–101 (2021).

    Article  Google Scholar 

  87. Carrer, F. et al. Chemical analysis of pottery demonstrates prehistoric origin for high-altitude alpine dairying. PLoS ONE 11, e0151442 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Casanova, E. et al. Spatial and temporal disparities in human subsistence in the Neolithic Rhineland gateway. J. Archaeol. Sci. 122, 105215 (2020).

    Article  CAS  Google Scholar 

  89. Colonese, A. C. et al. The identification of poultry processing in archaeological ceramic vessels using in-situ isotope references for organic residue analysis. J. Archaeol. Sci. 78, 179–192 (2017).

    Article  CAS  Google Scholar 

  90. Copley, M. S. et al. Dairying in antiquity. I. Evidence from absorbed lipid residues dating to the British Iron Age. J. Archaeol. Sci. 32, 485–503 (2005).

    Article  Google Scholar 

  91. Copley, M. S., Berstan, R., Straker, V., Payne, S. & Evershed, R. P. Dairying in antiquity. II. Evidence from absorbed lipid residues dating to the British Bronze Age. J. Archaeol. Sci. 32, 505–521 (2005).

    Article  Google Scholar 

  92. Copley, M. S. et al. Dairying in antiquity. III. Evidence from absorbed lipid residues dating to the British Neolithic. J. Archaeol. Sci. 32, 523–546 (2005).

    Article  Google Scholar 

  93. Copley, M. S. & Evershed, R. P. in Building Memories: the Neolithic Cotswold Long Barrow at Ascott-under-Wychwood, Oxfordshire (eds Benson, D. & Whittle, A.) 283–288 (Oxbow Books, 2006).

  94. Courel, B. et al. Organic residue analysis shows sub-regional patterns in the use of pottery by Northern European hunter–gatherers. R. Soc. Open Sci. 7, 192016 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  95. Craig, O. E. et al. Did the first farmers of central and eastern Europe produce dairy foods? Antiquity 79, 882–894 (2005).

    Article  Google Scholar 

  96. Craig, O. E., Taylor, G., Mulville, J., Collins, M. J. & Parker Pearson, M. The identification of prehistoric dairying activities in the Western Isles of Scotland: an integrated biomolecular approach. J. Archaeol. Sci. 32, 91–103 (2005).

    Article  Google Scholar 

  97. Craig, O. E. et al. Molecular and isotopic demonstration of the processing of aquatic products in Northern European Prehistoric pottery. Archaeometry 49, 135–152 (2007).

    Article  CAS  Google Scholar 

  98. Craig, O. in Archaeology Meets science: Biomolecular Investigations in Bronze Age Greece (eds Tzedakis, Y. et. al.) 121–124 (Oxbow Books, 2008).

  99. Craig, O. E. et al. Feeding Stonehenge: cuisine and consumption at the Late Neolithic site of Durrington Walls. Antiquity 89, 1096–1109 (2015).

    Article  Google Scholar 

  100. Craig-Atkins, E. et al. The dietary impact of the Norman Conquest: a multiproxy archaeological investigation of Oxford, UK. PLoS ONE 15, e0235005 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cramp, L. J. E., Evershed, R. P. & Eckardt, H. What was a mortarium used for? Organic residues and cultural change in Iron Age and Roman Britain. Antiquity 85, 1339–1352 (2011).

    Article  Google Scholar 

  102. Cramp, L. J. E. et al. Regional diversity in subsistence among early farmers in Southeast Europe revealed by archaeological organic residues. Proc. R. Soc. B 286, 20182347 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cramp, L. J. E., Król, D., Rutter, M., Heyd, V. M. & Pospieszny, L. Analiza pozostałości organicznych z ceramiki kultury rzucewskiej z Rzucewa. Pomorania Antiqua XXVIII, 245–259 (2019).

    Google Scholar 

  104. Demirci, Ö., Lucquin, A., Craig, O. E. & Raemaekers, D. C. M. First lipid residue analysis of Early Neolithic pottery from Swifterbant (the Netherlands, ca. 4300–4000 BC). Archaeol. Anthropol. Sci. 12, 105 (2020).

    Article  Google Scholar 

  105. Demirci, Ö., Lucquin, A., Çakırlar, C., Craig, O. E. & Raemaekers, D. C. M. Lipid residue analysis on Swifterbant pottery (c. 5000–3800 cal bc) in the Lower Rhine–Meuse area (the Netherlands) and its implications for human–animal interactions in relation to the Neolithisation process. J. Archaeol. Sci. Rep. 36, 102812 (2021).

    Google Scholar 

  106. Dreslerová, D. et al. Seeking the meaning of a unique mountain site through a multidisciplinary approach. The Late La Tène site at Sklářské Valley, Šumava Mountains, Czech Republic. Quat. Int. 542, 88–108 (2020).

    Article  Google Scholar 

  107. Drieu, L. et al. Chemical evidence for the persistence of wine production and trade in Early Medieval Islamic Sicily. Proc. Natl Acad. Sci. USA 118, e2017983118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Drieu, L. et al. A Neolithic without dairy? Chemical evidence from the content of ceramics from the Pendimoun rock-shelter (Castellar, France, 5750–5150 BC). J. Archaeol. Sci. Rep. 35, 102682 (2021).

    Google Scholar 

  109. Dunne, J. et al. Milk of ruminants in ceramic baby bottles from prehistoric child graves. Nature 574, 246–248 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  110. Dunne, J., Chapman, A., Blinkhorn, P. & Evershed, R. P. Reconciling organic residue analysis, faunal, archaeobotanical and historical records: diet and the medieval peasant at West Cotton, Raunds, Northamptonshire. J. Archaeol. Sci. 107, 58–70 (2019).

    Article  Google Scholar 

  111. Dunne, J., Chapman, A., Blinkhorn, P. & Evershed, R. P. Fit for purpose? Organic residue analysis and vessel specialisation: the perfectly utilitarian medieval pottery assemblage from West Cotton, Raunds. J. Archaeol. Sci. 120, 105178 (2020).

    Article  CAS  Google Scholar 

  112. Dunne, J. et al. Finding Oxford’s medieval Jewry using organic residue analysis, faunal records and historical documents. Archaeol. Anthropol. Sci. 13, 48 (2021).

    Article  Google Scholar 

  113. Evershed, R. P., Copley, M. S., Dickson, L. & Hansel, F. A. Experimental evidence for the processing of marine animal products and other commodities containing polyunsaturated fatty acids in pottery vessels. Archaeometry 50, 101–113 (2008).

    Article  CAS  Google Scholar 

  114. Fanti, L. et al. The role of pottery in Middle Neolithic societies of western Mediterranean (Sardinia, Italy, 4500–4000 cal bc) revealed through an integrated morphometric, use-wear, biomolecular and isotopic approach. J. Archaeol. Sci. 93, 110–128 (2018).

    Article  CAS  Google Scholar 

  115. Francés-Negro, M. et al. Neolithic to Bronze Age economy and animal management revealed using analyses of lipid residues of pottery vessels and faunal remains at El Portalón de Cueva Mayor (Sierra de Atapuerca, Spain). J. Archaeol. Sci. 131, 105380 (2021).

    Article  CAS  Google Scholar 

  116. Gregg, M. W., Banning, E. B., Gibbs, K. & Slater, G. F. Subsistence practices and pottery use in Neolithic Jordan: molecular and isotopic evidence. J. Archaeol. Sci. 36, 937–946 (2009).

    Article  Google Scholar 

  117. Gunnarssone, A., Oras, E., Talbot, H. M., Ilves, K. & Legzdiņa, D. Cooking for the living and the dead: lipid analyses of Rauši settlement and cemetery pottery from the 11th–13th century. Estonian J. Archaeol. 24, 45–69 (2020).

  118. Heron, C. et al. Cooking fish and drinking milk? Patterns in pottery use in the southeastern Baltic, 3300–2400 cal bc. J. Archaeol. Sci. 63, 33–43 (2015).

    Article  CAS  Google Scholar 

  119. Hoekman-Sites, H. A. & Giblin, J. I. Prehistoric animal use on the Great Hungarian Plain: a synthesis of isotope and residue analyses from the Neolithic and Copper Age. J. Anthropol. Archaeol. 31, 515–527 (2012).

    Article  Google Scholar 

  120. Isaksson, S. & Hallgren, F. Lipid residue analyses of Early Neolithic funnel-beaker pottery from Skogsmossen, eastern Central Sweden, and the earliest evidence of dairying in Sweden. J. Archaeol. Sci. 39, 3600–3609 (2012).

    Article  CAS  Google Scholar 

  121. Krueger, M., Bajčev, O., Whelton, H. L. & Evershed, R. P. in The Neolithic in the Middle Morava Valley (ed. Perić, S.) Vol. 3, 61–76 (Institute of Archaeology, 2019).

  122. Manzano, E. et al. An integrated multianalytical approach to the reconstruction of daily activities at the Bronze Age settlement in Peñalosa (Jaén, Spain). Microchem. J. 122, 127–136 (2015).

    Article  CAS  Google Scholar 

  123. Manzano, E. et al. Molecular and isotopic analyses on prehistoric pottery from the Virués-Martínez cave (Granada, Spain). J. Archaeol. Sci. Rep. 27, 101929 (2019).

    Google Scholar 

  124. Matlova, V. et al. Defining pottery use and animal management at the Neolithic site of Bylany (Czech Republic). J. Archaeol. Sci. Rep. 14, 262–274 (2017).

    Google Scholar 

  125. McClure, S. B. et al. Fatty acid specific δ13C values reveal earliest Mediterranean cheese production 7,200 years ago. PLoS ONE 13, e0202807 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Mileto, S., Kaiser, E., Rassamakin, Y., Whelton, H. & Evershed, R. P. Differing modes of animal exploitation in North-Pontic Eneolithic and Bronze Age Societies. Sci. Technol. Archaeol. Res. 3, 112–125 (2017).

    Google Scholar 

  127. Mukherjee, A. J., Berstan, R., Copley, M. S., Gibson, A. M. & Evershed, R. P. Compound-specific stable carbon isotopic detection of pig product processing in British Late Neolithic pottery. Antiquity 83, 743–754 (2007).

    Article  Google Scholar 

  128. Mukherjee, A. J., Gibson, A. M. & Evershed, R. P. Trends in pig product processing at British Neolithic Grooved Ware sites traced through organic residues in potsherds. J. Archaeol. Sci. 35, 2059–2073 (2008).

    Article  Google Scholar 

  129. Ogrinc, N., Budja, M., Potočnik, D., Žibrat Gašparič, A. & Mlekuž, D. Lipids, pots and food processing at Hočevarica, Ljubljansko barje, Slovenia. Doc. Praehist. XLI, 181–194 (2014).

    Article  Google Scholar 

  130. Oras, E. et al. The adoption of pottery by north-east European hunter-gatherers: evidence from lipid residue analysis. J. Archaeol. Sci. 78, 112–119 (2017).

    Article  CAS  Google Scholar 

  131. Oras, E. et al. Social food here and hereafter: multiproxy analysis of gender-specific food consumption in conversion period inhumation cemetery at Kukruse, NE-Estonia. J. Archaeol. Sci. 97, 90–101 (2018).

    Article  CAS  Google Scholar 

  132. Outram, A. K. et al. Horses for the dead: funerary foodways in Bronze Age Kazakhstan. Antiquity 85, 116–128 (2010).

    Article  Google Scholar 

  133. Outram, A. K. et al. Patterns of pastoralism in later Bronze Age Kazakhstan: new evidence from faunal and lipid residue analyses. J. Archaeol. Sci. 39, 2424–2435 (2012).

    Article  CAS  Google Scholar 

  134. Özbal, H. et al. Neolitik Batı Anadolu ve Marmara yerleşimleri çanak çömleklerinde organik kalıntı analizleri. Arkeometri Sonuçları Toplantısı 28, 105–114 (2013).

    Google Scholar 

  135. Özbal, H. et al. Yenikapı, Aşağıpınar, Bademağacı ve Barcın Çömleklerindeorganik kalıntı analizi. Arkeometri Sonuçları Toplantısı 29, 83–90 (2013).

    Google Scholar 

  136. Pääkkönen, M., Bläuer, A., Evershed, R. P. & Asplund, H. Reconstructing food procurement and processing in early Comb ware period through organic residues in early Comb and Jäkärlä ware pottery. Fennosc. Archaeol. XXXIII, 57–75 (2016).

    Google Scholar 

  137. Pääkkönen, M., Bläuer, A., Olsen, B., Evershed, R. P. & Asplund, H. Contrasting patterns of prehistoric human diet and subsistence in northernmost Europe. Sci. Rep. 8, 1148 (2018).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  138. Papakosta, V., Oras, E. & Isaksson, S. Early pottery use across the Baltic—a comparative lipid residue study on Ertebølle and Narva ceramics from coastal hunter-gatherer sites in southern Scandinavia, northern Germany and Estonia. J. Archaeol. Sci. Rep. 24, 142–151 (2019).

    Google Scholar 

  139. Pennetta, A., Fico, D., Lucrezia Savino, M., Larocca, F. & Egidio De Benedetto, G. Characterization of Bronze age pottery from the Grotte di Pertosa-Auletta (Italy): results from the first analysis of organic lipid residues. J. Archaeol. Sci. Rep. 31, 102308 (2020).

    Google Scholar 

  140. Piličiauskas, G. et al. The Corded Ware culture in the Eastern Baltic: new evidence on chronology, diet, beaker, bone and flint tool function. J. Archaeol. Sci. Rep. 21, 538–552 (2018).

    Google Scholar 

  141. Piličiauskas, G. et al. Fishers of the Corded Ware culture in the Eastern Baltic. Acta Archaeol. 91, 95–120 (2020).

    Article  Google Scholar 

  142. Robinson, G. et al. Furness’s first farmers: evidence of Early Neolithic settlement and dairying in Cumbria. Proc. Prehist. Soc. 86, 165–198 (2020).

  143. Robson, H. K. et al. Diet, cuisine and consumption practices of the first farmers in the southeastern Baltic. Archaeol. Anthropol. Sci. 11, 4011–4024 (2019).

  144. Roffet-Salque, M. & Evershed, R. P. in Kopydłowo, stanowisko 6. Osady neolityczne z pogranicza Kujaw i Wielkopolski (eds Marciniak, A. et al.) 133–142 (Wydawnictwo Profil-Archeo, 2015).

  145. Roffet-Salque, M., Banecki, B. & Evershed, R. P. in A Megalithic Tomb of the Globular Amphora Culture from Kierzkowo in the Pałuki Region—A Silent Witness of Ancestor Worship from the Stone Age Biskupin Archaeological Works (eds Nowaczyk, S. et al.) 251–266 (Archaeological Museum in Biskupin, 2017).

  146. Roffet-Salque, M. et al. in Ludwinowo 7—Neolithic Settlement in Kuyavia Saved Archaeological Heritage 8 (Joanna Pyzel, J.) 301–316 (Profil-Archeo Publishing House and Archaeological Studio, University of Gdańsk Publishing House, 2019).

  147. Salque, M. et al. New insights into the early Neolithic economy and management of animals in Southern and Central Europe revealed using lipid residue analyses of pottery vessels. Anthropozoologica 47, 45–61 (2012).

    Article  Google Scholar 

  148. Smyth, J. & Evershed, R. P. The molecules of meals: new insight into Neolithic foodways. Proc. R. Ir. Acad. 115C, 27–46 (2015).

    Article  Google Scholar 

  149. Šoberl, L. Pots for the Afterlife: Organic Residue Analysis of British Early Bronze Age Pottery from Funerary Contexts. PhD thesis. Univ. of Bristol (2011).

  150. Šoberl, L., Žibrat Gašparič, A., Budja, M. & Evershed, R. P. Early herding practices revealed through organic residue analysis of pottery from the early Neolithic rock shelter of Mala Triglavca, Slovenia. Doc. Praehist. 35, 253–260 (2008).

  151. Šoberl, L. et al. Neolithic and Eneolithic activities inferred from organic residue analysis of pottery from Mala Triglavca, Moverna vas and Ajdovska jama, Slovenia. Doc. Praehist. XLI, 149–179 (2014).

    Article  Google Scholar 

  152. Spangenberg, J. E., Jacomet, S. & Schibler, J. Chemical analyses of organic residues in archaeological pottery from Arbon Bleiche 3, Switzerland—evidence for dairying in the late Neolithic. J. Archaeol. Sci. 33, 1–13 (2006).

    Article  Google Scholar 

  153. Spangenberg, J. E., Matuschik, I., Jacomet, S. & Schibler, J. Direct evidence for the existence of dairying farms in prehistoric Central Europe (4th mil. BC). Isotopes Environ. Health Stud. 44, 189–200 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Spataro, M. et al. Production and function of Neolithic black-painted pottery from Schela Cladovei (Iron Gates, Romania). Archaeol. Anthropol. Sci. 11, 6287–6304 (2019).

  155. Steele, V. J. & Stern, B. Red Lustrous Wheelmade ware: analysis of organic residues in Late Bronze Age trade and storage vessels from the eastern Mediterranean. J. Archaeol. Sci. Rep. 16, 641–657 (2017).

    Google Scholar 

  156. Stojanovski, D. et al. Living off the land: terrestrial-based diet and dairying in the farming communities of the Neolithic Balkans. PLoS ONE 15, e0237608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stojanovski, D. et al. Anta 1 de Val da Laje—the first direct view at diet, dairying practice and socio-economic aspects of pottery use in the final Neolithic of central Portugal. Quat. Int. 542, 1–8 (2020).

    Article  Google Scholar 

  158. Tarifa-Mateo, N. et al. New insights from Neolithic pottery analyses reveal subsistence practices and pottery use in early farmers from Cueva de El Toro (Málaga, Spain). Archaeol. Anthropol. Sci. 11, 5199–5211 (2019).

  159. Weber, J., Brozio, J. P., Müller, J. & Schwark, L. Grave gifts manifest the ritual status of cattle in Neolithic societies of northern Germany. J. Archaeol. Sci. 117, 105122 (2020).

    Article  Google Scholar 

  160. Evershed, R. P., Heron, C. & Goad, L. J. Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography-mass spectrometry. Analyst 115, 1339–1342 (1990).

    Article  CAS  ADS  Google Scholar 

  161. Correa-Ascencio, M. & Evershed, R. P. High throughput screening of organic residues in archaeological potsherds using direct methanolic acid extraction. Anal. Methods 6, 1330–1340 (2014).

    Article  CAS  Google Scholar 

  162. Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55, 1869–1887 (2013).

    Article  CAS  Google Scholar 

  163. Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article  Google Scholar 

  164. Graffelman, J. Exploring diallelic genetic markers: the HardyWeinberg package. J. Stat. Softw. 64, 1–23 (2015).

    Article  Google Scholar 

  165. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  166. Mitchell, R., Hemani, G., Dudding, T. & Paternoster, L. UK Biobank Genetic Data: MRC-IEU Quality Control Version 2; https://doi.org/10.5523/bris.1ovaau5sxunp2cv8rcy88688v (Univ. Bristol, 2019).

  167. Brumpton, B. et al. Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses. Nat. Commun. 11, 3519 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  168. Howe, L. J. et al. Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects. Nat. Genet. 54, 581–592 (2022).

  169. Agranat-Tamir, L. et al. The genomic history of the Bronze Age Southern Levant. Cell 181, 1146–1157 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Antonio, M. L. et al. Ancient Rome: a genetic crossroads of Europe and the Mediterranean. Science 366, 708–714 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  171. Broushaki, F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  172. Brunel, S. et al. Ancient genomes from present-day France unveil 7,000 years of its demographic history. Proc. Natl Acad. Sci. USA 117, 12791 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cassidy, L. M. et al. Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. Proc. Natl Acad. Sci. USA 113, 368–373 (2015).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  174. Cassidy, L. M. et al. A dynastic elite in monumental Neolithic society. Nature 582, 384–388 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  175. Damgaard, Pd. B. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  176. Damgaard, Pd. B. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, eaar7711 (2018).

    Article  CAS  Google Scholar 

  177. Feldman, M. et al. Ancient DNA sheds light on the genetic origins of early Iron Age Philistines. Sci. Adv. 5, eaax0061 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  178. Fernandes, D. M. et al. The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nat. Ecol. Evol. 4, 334–345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  180. González-Fortes, G. et al. Paleogenomic evidence for multi-generational mixing between Neolithic farmers and mesolithic hunter-gatherers in the Lower Danube Basin. Curr. Biol. 27, 1801–1810 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. González-Fortes, G. et al. A western route of prehistoric human migration from Africa into the Iberian Peninsula. Proc. R. Soc. B 286, 20182288 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Günther, T. et al. Population genomics of Mesolithic Scandinavia: investigating early postglacial migration routes and high-latitude adaptation. PLoS Biol. 16, e2003703 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Haber, M. et al. Continuity and admixture in the last five millennia of Levantine history from Ancient Canaanite and present-day Lebanese genome sequences. Am. J. Hum. Genet. 101, 274–282 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Harney, E. et al. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nat. Commun. 9, 3336 (2018).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  185. Hofmanová, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl Acad. Sci. USA 113, 6886–6891 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Järve, M. et al. Shifts in the genetic landscape of the Western Eurasian Steppe associated with the beginning and end of the Scythian dominance. Curr. Biol. 29, 2430–2441 (2019).

    Article  PubMed  CAS  Google Scholar 

  187. Jones, E. R. et al. The Neolithic transition in the Baltic was not driven by admixture with early European farmers. Curr. Biol. 27, 576–582 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Keller, A. et al. New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing. Nat. Commun. 3, 698 (2012).

    Article  PubMed  ADS  CAS  Google Scholar 

  189. Krzewińska, M. et al. Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads. Sci. Adv. 4, eaat4457 (2018).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  190. Lamnidis, T. C. et al. Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe. Nat. Commun. 9, 5018 (2018).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  191. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  192. Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  193. Lazaridis, I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  194. Linderholm, A. et al. Corded Ware cultural complexity uncovered using genomic and isotopic analysis from south-eastern Poland. Sci. Rep. 10, 6885 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  195. Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  196. Malmström, H. et al. The genomic ancestry of the Scandinavian Battle Axe Culture people and their relation to the broader Corded Ware horizon. Proc. R. Soc. B 286, 20191528 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Marcus, J. H. et al. Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nat. Commun. 11, 939 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  198. Margaryan, A. et al. Population genomics of the Viking world. Nature 585, 390–396 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  199. Martiniano, R. et al. The population genomics of archaeological transition in west Iberia: investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet. 13, e1006852 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  201. Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  202. Mittnik, A. et al. Kinship-based social inequality in Bronze Age Europe. Science 93, eaax6219 (2019).

    Google Scholar 

  203. Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Olalde, I. et al. A common genetic origin for early farmers from Mediterranean Cardial and Central European LBK cultures. Mol. Biol. Evol. 32, 3132–3142 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  206. Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  207. Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  208. Saag, L. et al. Extensive farming in Estonia started through a sex-biased migration from the Steppe. Curr. Biol. 27, 2185–2193 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Sánchez-Quinto, F. et al. Megalithic tombs in western and northern Neolithic Europe were linked to a kindred society. Proc. Natl Acad. Sci. USA 116, 9469–9474 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Schuenemann, V. J. et al. Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods. Nat. Commun. 8, 15694 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  211. Schroeder, H. et al. Unraveling ancestry, kinship, and violence in a Late Neolithic mass grave. Proc. Natl Acad. Sci. USA 116, 10705–10710 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Skoglund, P. et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 344, 747–750 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  213. Skourtanioti, E. et al. Genomic history of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus. Cell 181, 1158–1175 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Unterländer, M. et al. Ancestry and demography and descendants of Iron Age nomads of the Eurasian Steppe. Nat. Commun. 8, 14615 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  215. Valdiosera, C. et al. Four millennia of Iberian biomolecular prehistory illustrate the impact of prehistoric migrations at the far end of Eurasia. Proc. Natl Acad. Sci. USA 115, 3428–3433 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Villalba-Mouco, V. et al. Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula. Curr. Biol. 29, 1169–1177 (2019).

    Article  CAS  PubMed  Google Scholar 

  217. Wang, C.-C. et al. Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nat. Commun. 10, 590 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  218. Allen Ancient DNA Resource (AADR): Downloadable genotypes of present-day and ancient DNA data. Version 44.3 https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data (David Reich Lab, 2021).

  219. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Felsenstein, J. Theoretical Evolutionary Genetics (Univ. of Washington, 2016).

  221. Brest, J., Greiner, S., Boskovic, B., Mernik, M. & Zumer, V. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006).

    Article  Google Scholar 

  222. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  223. Revell, L. J. learnPopGen: an R package for population genetic simulation and numerical analysis. Ecol. Evol. 9, 7896–7902 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Jewett, E. M., Steinrücken, M. & Song, Y. S. The effects of population size histories on estimates of selection coefficients from time-series genetic data. Mol. Biol. Evol. 33, 3002–3027 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Weninger, B., Joris, O. & Danzeglocke, U. CalPal-2007. Cologne Radiocarbon Calibration & Palaeoclimate Research Package (CalPal, 2007).

  226. Galate, P. BANADORA, Banque de données des dates radiocarbones de Lyon pour l’Europe et le Proche-Orient http://www.archeometrie.mom.fr/banadora (Laboratoire ArAr, 2011).

  227. Hinz, M. et al. RADON-Radiocarbon dates online 2012. Central European database of 14C dates for the Neolithic and the Early Bronze Age. J. Neolit. Archaeol. https://doi.org/10.12766/jna.2012.65 (2012).

  228. Manning, K., Colledge, S., Crema, E. R., Shennan, S. & Timpson, A. The cultural evolution of Neolithic Europe. EUROEVOL Dataset 1: Sites, phases and radiocarbon data. J. Open Archaeol. Data 5, e2 (2016).

  229. Burrow, S. & Williams, S. The Wales and Borders Radiocarbon Database (Amgueddfa Cymru: National Museum Wales, 2008).

  230. Ralston, I. & Ashmore, P. Canmore Scottish Radiocarbon Database https://canmore.org.uk/project/919374 (Historic Environment Scotland; accessed 14 July 2021).

  231. Balsera, V., Díaz-del-Río, P., Gilman, A., Uriarte, A. & Vicent, J. M. Approaching the demography of late prehistoric Iberia through summed calibrated date probability distributions (7000–2000 cal bc). Quat. Int. 386, 208–211 (2015).

    Article  Google Scholar 

  232. Vermeersch, P. M. Radiocarbon Palaeolithic Europe Database v.18 (KU Leuven, 2015); https://ees.kuleuven.be/geography/projects/14c-palaeolithic/index.html

  233. Bivand, R. & Lewin-Koh, N. maptools: Tools for handling spatial objects. R package version 1.1–2 (2021).

  234. Brownrigg, R. mapdata: Extra map databases. R package version 2.3.0 (2018).

  235. Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 3.5–15 (2022).

  236. Bivand, R. & Rundel, C. rgeos: Interface to geometry engine—open source ('GEOS'). R package version 0.5–9 (2021).

  237. Neuwirth, E. RColorBrewer: ColorBrewer palettes. R package version 1.1–2 (2014).

Download references

Acknowledgements

This study was funded by the European Research Council (ERC) Advanced Grant ‘NeoMilk’ FP7-IDEAS-ERC/324202. M.R.-S. thanks the Royal Society for funding her Dorothy Hodgkin Fellowship (DHF\R1\180064 and RGF\EA\181067). The Natural Environment Research Council (NERC) are thanked for partial funding of the National Environmental Isotope Facility (NEIF; NE/V003917/1). We wish to thank the NERC (NE/V003917/1), the ERC (FP7-IDEAS-ERC/340923) and the University of Bristol for funding GC–MS and GC–IRMS capabilities used for this work. Y.D. and M.G.T. received funding from the ERC Horizon 2020 research and innovation programme (grant agreement no. 788616 YMPACT) and A.T. and M.G.T. received funding from the ERC Horizon 2020 research and innovation programme (grant agreement no. 951385 COREX). G.D.S. and M.S.L. work in the MRC Integrative Epidemiology Unit at the University of Bristol (MC_UU_00011/1). D. Altoft, B. Banecki, L. Benson, P. Bickle (University of York, UK), S. Ferrandin, A. Lafarge, C. Maule (University of Bristol, UK), D. Miernecka, C. Walton-Doyle (University of Manchester, UK) and I. Wiltshire (University of Bristol, UK) are acknowledged for the sampling and/or analysis of some potsherds from this study at the University of Bristol. We thank S. Kalieva and V. Logvin (Kostanay State University, Kazakhstan), C. Lohr (Leibniz Research Institute for Archaeology, Mainz, Germany), J. Lüning (Johann Wolfgang Goethe-Universität, Frankfurt, Germany), I. Pavlů (Institute of Archaeology of the Academy of Sciences of the Czech Republic) and R. W. Schmitz (LVR-LandesMuseum, Bonn, Germany) for providing some of the sherds presented in this study. We are grateful to K. Dwyer, teaching fellow in English grammar and research methodology at University College London (UCL), for clarifying lactase non-persistence as the correct usage over non-lactase persistence, on the basis that ‘non’ qualifies persistence, even if lactase persistence is considered a compound noun. We are also grateful to L. Howe, Senior Research Associate at the MRC IEU for providing derived spousal pairs in UK Biobank. We acknowledge the use of the UCL Computer Science ECON High-Performance Computing (HPC) Cluster (ECON@UCL) and associated support services, in the completion of this work. This study was also supported by the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Contributions

R.P.E., M.G.T. and G.D.S. conceived the overall study. M.R.-S. and R.P.E. generated new lipid residue data. M.R.-S., A.T., Y.D. and M.S.L., acquired data, assembled new databases and undertook statistical modelling. G.D.S. and M.S.L. performed the UK Biobank analyses. Y.D., A.T. and M.G.T. conceptualized the selection model likelihood analysis. Y.D. and A.T. performed the selection model testing. A.T. devised the kernel interpolation and generated Figs. 1, 2 and 3. M.G.T., R.P.E., G.D.S., M.R.-S., Y.D., A.T. and M.S.L. wrote the paper. All other authors contributed either critical archaeological information, pottery from excavations, data of various types and expert knowledge. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Richard P. Evershed, George Davey Smith, Mélanie Roffet-Salque or Mark G. Thomas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Daniel Wegmann, Nicola Pirastu, Shevan Wilkin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Regional fluctuations in milk use throughout European prehistory.

Percentage of milk fats through time, calculated using all animal fat residues. Grey bars and black lines illustrate 95%, 50% CI and MAP in each time slice, using a uniform prior.

Extended Data Fig. 2 Summary of model selection results for the tested ecological time series.

Inverse solar insolation, fluctuations in population level, and residential density yield models significantly better than a null model of constant selection (significance computed by likelihood ratio test). See Extended Data Table 1 for corresponding parameter estimates, and multiple testing correction (no change in the set of significant models). Abbreviations: assimilation (assi.), inverse (inv.), fluctuation (fluc.).

Extended Data Fig. 3 Inverse insolation as a driver of selection strength.

Optimized parameters, resulting selection strength- and LP allele frequency curves for inverse (inv.) insolation, one of the four ecological proxy variables yielding likelihoods significantly better than a constant selection model. Although LP is generally thought of as a dominant trait, we only show the additive model results as the parameter estimates barely differ.

Extended Data Table 1 Model selection results for the tested ecological time series
Extended Data Table 2 Lactase genotype frequency and test for departure from Hardy–Weinberg equilibrium
Extended Data Table 3 Lactase persistence genotype correlation between spousal pairs in UK Biobank

Extended Data Fig. 4 Population fluctuation as a driver of selection strength.

Optimized parameters, resulting selection strength- and LP allele frequency curves for population (pop.) fluctuations (fluc.), one of the four ecological proxy variables yielding likelihoods significantly better than a constant selection model. Although LP is generally thought of as a dominant trait, we only show the additive model results as the parameter estimates barely differ.

Extended Data Fig. 5 Settlement density as a driver of selection strength.

Optimized parameters, resulting selection strength- and LP allele frequency curves for the cluster statistic, one of the four ecological proxy variables yielding likelihoods significantly better than a constant selection model. Although LP is generally thought of as a dominant trait, we only show the additive model results as the parameter estimates barely differ.

Extended Data Fig. 6 Wild animal consumption as a driver of selection strength.

Optimized parameters, resulting selection strength- and LP allele frequency curves for proportion of wild versus domestic animal, one of the four ecological proxy variables yielding likelihoods significantly better than a constant selection model. Although LP is generally thought of as a dominant trait, we only show the additive model results as the parameter estimates barely differ.

Extended Data Table 4 Proportion of significant likelihood differences between constant and fluctuating selection model driven by milk exploitation

Supplementary information

Supplementary Information

Supplementary Table 1 and Figs. 1–9.

Reporting Summary

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evershed, R.P., Davey Smith, G., Roffet-Salque, M. et al. Dairying, diseases and the evolution of lactase persistence in Europe. Nature 608, 336–345 (2022). https://doi.org/10.1038/s41586-022-05010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05010-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing