Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Revealing the short-range structure of the mirror nuclei 3H and 3He

Abstract

When protons and neutrons (nucleons) are bound into atomic nuclei, they are close enough to feel significant attraction, or repulsion, from the strong, short-distance part of the nucleon–nucleon interaction. These strong interactions lead to hard collisions between nucleons, generating pairs of highly energetic nucleons referred to as short-range correlations (SRCs). SRCs are an important but relatively poorly understood part of nuclear structure1,2,3, and mapping out the strength and the isospin structure (neutron–proton (np) versus proton–proton (pp) pairs) of these virtual excitations is thus critical input for modelling a range of nuclear, particle and astrophysics measurements3,4,5. Two-nucleon knockout or ‘triple coincidence’ reactions have been used to measure the relative contribution of np-SRCs and pp-SRCs by knocking out a proton from the SRC and detecting its partner nucleon (proton or neutron). These measurements6,7,8 have shown that SRCs are almost exclusively np pairs, but they had limited statistics and required large model-dependent final-state interaction corrections. Here we report on measurements using inclusive scattering from the mirror nuclei hydrogen-3 and helium-3 to extract the np/pp ratio of SRCs in systems with a mass number of three. We obtain a measure of the np/pp SRC ratio that is an order of magnitude more precise than previous experiments, and find a marked deviation from the near-total np dominance observed in heavy nuclei. This result implies an unexpected structure in the high-momentum wavefunction for hydrogen-3 and helium-3. Understanding these results will improve our understanding of the short-range part of the nucleon–nucleon interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ratio of np-SRCs to pp-SRCs in nuclei.
Fig. 2: Comparison of SRC contributions in 3He and 3H.
Fig. 3: Nuclear enhancement of np-SRC over pp-SRCs.

Similar content being viewed by others

Data availability

The raw data from this experiment were generated at the Thomas Jefferson National Accelerator Facility and are archived in the Jefferson Lab mass storage silo. Access to these data and relevant analysis codes can be facilitated by contacting the corresponding author.

References

  1. Frankfurt, L. & Strikman, M. Hard nuclear processes and microscopic nuclear structure. Phys. Rep. 160, 235–427 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Sargsian, M. M. et al. Hadrons in the nuclear medium. J. Phys. G29, R1 (2003).

    Article  Google Scholar 

  3. Arrington, J., Fomin, N. & Schmidt, A. Progress in understanding short-range structure in nuclei: an experimental perspective. Preprint at https://arxiv.org/abs/2203.02608 (2022).

  4. Hen, O., Miller, G. A., Piasetzky, E. & Weinstein, L. B. Nucleon–nucleon correlations, short-lived excitations, and the quarks within. Rev. Mod. Phys. 89, 045002 (2017).

    Article  ADS  Google Scholar 

  5. Arrington, J. et al. Physics with CEBAF at 12 GeV and future opportunities. Preprint at https://arxiv.org/abs/2112.00060 (2021).

  6. Subedi, R. et al. Probing cold dense nuclear matter. Science 320, 1476–1478 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Korover, I. et al. Probing the repulsive core of the nucleon–nucleon interaction via the 4He(e,eʹpN) triple-coincidence reaction. Phys. Rev. Lett. 113, 022501 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Duer, M. et al. Direct observation of proton–neutron short-range correlation dominance in heavy nuclei. Phys. Rev. Lett. 122, 172502 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kelly, J. Nucleon knockout by intermediate-energy electrons. Adv. Nucl. Phys. 23, 75–294 (1996).

    Article  CAS  Google Scholar 

  10. Frankfurt, L. L., Strikman, M. I., Day, D. B. & Sargsyan, M. Evidence for short-range correlations from high Q2 (e,eʹ) reactions. Phys. Rev. C 48, 2451 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Fomin, N. et al. New measurements of high-momentum nucleons and short-range structures in nuclei. Phys. Rev. Lett. 108, 092502 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Schmookler, B. et al. Modified structure of protons and neutrons in correlated pairs. Nature 566, 354–358 (2019).

    Article  Google Scholar 

  13. Egiyan, K. S. et al. Observation of nuclear scaling in the A(e, eʹ) reaction at xB > 1. Phys. Rev. C 68, 014313 (2003).

    Article  ADS  Google Scholar 

  14. Colle, C., Cosyn, W. & Ryckebusch, J. Final-state interactions in two-nucleon knockout reactions. Phys. Rev. C 93, 034608 (2016).

    Article  ADS  Google Scholar 

  15. Schiavilla, R., Wiringa, R. B., Pieper, S. C. & Carlson, J. Tensor forces and the ground-state structure of nuclei. Phys. Rev. Lett. 98, 132501 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Wiringa, R., Schiavilla, R., Pieper, S. & Carlson, J. Dependence of two-nucleon momentum densities on total pair momentum. Phys. Rev. C 78, 021001 (2008).

    Article  ADS  Google Scholar 

  17. Wiringa, R., Schiavilla, R., Pieper, S. & Carlson, J. Nucleon and nucleon-pair momentum distributions in A ≤ 12 nuclei. Phys. Rev. C 89, 024305 (2014).

    Article  ADS  Google Scholar 

  18. Frankfurt, L., Sargsian, M. & Strikman, M. Recent observation of short range nucleon correlations in nuclei and their implications for the structure of nuclei and neutron stars. Int. J. Mod. Phys. A 23, 2991–3055 (2008).

    Article  ADS  CAS  MATH  Google Scholar 

  19. Lu, H., Ren, Z. & Bai, D. Neutron–neutron short-range correlations and their impacts on neutron stars. Nucl. Phys. A 1021, 122408 (2022).

    Article  CAS  Google Scholar 

  20. Seely, J. et al. New measurements of the EMC effect in very light nuclei. Phys. Rev. Lett. 103, 202301 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Arrington, J. et al. A detailed study of the nuclear dependence of the EMC effect and short-range correlations. Phys. Rev. C 86, 065204 (2012).

    Article  ADS  Google Scholar 

  22. Arrington, J. & Fomin, N. Searching for flavor dependence in nuclear quark behavior. Phys. Rev. Lett. 123, 042501 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Arrington, J. et al. Measurement of the EMC effect in light and heavy nuclei. Phys. Rev. C 104, 065203 (2021).

    Article  ADS  CAS  Google Scholar 

  24. Nguyen, D. et al. Novel observation of isospin structure of short-range correlations in calcium isotopes. Phys. Rev. C 102, 064004 (2020).

    Article  CAS  Google Scholar 

  25. Alcorn, J. et al. Basic instrumentation for Hall A at Jefferson Lab. Nucl. Instrum. Methods A 522, 294–346 (2004).

    Article  ADS  CAS  Google Scholar 

  26. Fomin, N., Higinbotham, D., Sargsian, M. & Solvignon, P. New results on short-range correlations in nuclei. Annu. Rev. Nucl. Part. Sci. 67, 129–159 (2017).

    Article  ADS  CAS  Google Scholar 

  27. Cruz-Torres, R. et al. Comparing proton momentum distributions in A = 2 and 3 nuclei via 2H 3H and 3He (e,eʹp) measurements. Phys. Lett. B 797, 134890 (2019).

    Article  Google Scholar 

  28. Arrington, J., Higinbotham, D., Rosner, G. & Sargsian, M. Hard probes of short-range nucleon–nucleon correlations. Prog. Part. Nucl. Phys. 67, 898–938 (2012).

    Article  ADS  CAS  Google Scholar 

  29. Ciofi degli Atti, C. & Morita, H. Universality of many-body two-nucleon momentum distributions: correlated nucleon spectral function of complex nuclei. Phys. Rev. C 96, 064317 (2017).

    Article  ADS  Google Scholar 

  30. Andreoli, L. et al. Electron scattering on A=3 nuclei from quantum Monte Carlo based approaches. Phys. Rev. C 105, 014002 (2022).

    Article  ADS  CAS  Google Scholar 

  31. Sargsian, M. M., Abrahamyan, T. V., Strikman, M. I. & Frankfurt, L. L. Exclusive electrodisintegration of 3He at high Q2. I. Generalized eikonal approximation. Phys. Rev. C 71, 044614 (2005).

    Article  ADS  Google Scholar 

  32. Cruz-Torres, R. et al. Probing few-body nuclear dynamics via 3H and 3He(e,eʹp)pn cross-section measurements. Phys. Rev. Lett. 124, 212501 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Blankleider, B. & Woloshyn, R. M. Quasielastic scattering of polarized electrons on polarized 3He. Phys. Rev. C 29, 538–552 (1984).

    Article  ADS  CAS  Google Scholar 

  34. Abrams, D. et al. Measurement of the nucleon \({F}_{2}^{n}/{F}_{2}^{p}\) structure function ratio by the Jefferson Lab MARATHON tritium/helium-3 deep inelastic scattering experiment. Phys. Rev. Lett. 128, 132003 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Brajuskovic, B. et al. Thermomechanical design of a static gas target for electron accelerators. Nucl. Instrum. Methods A 729, 469–473 (2013).

    Article  ADS  CAS  Google Scholar 

  36. Meekins, D. Determination of Solid and Fluid Target Thickness from Measurements JLab Document Number TGT-CALC-17-020 (2020).

  37. Santiesteban, S. N. et al. Density changes in low pressure gas targets for electron scattering experiments. Nucl. Instrum. Methods A 940, 351–358 (2019).

    Article  ADS  CAS  Google Scholar 

  38. Dasu, S. Precision Measurement of x, Q2 and A-dependence of R=σLT and F2 in Deep Inelastic Scattering. PhD thesis, Univ. Rochester (1988).

  39. DeForest, T. Off-shell electron–nucleon cross sections. The impulse approximation. Nucl. Phys. A 392, 232–248 (1983).

    Article  ADS  Google Scholar 

  40. Arrington, J. Implications of the discrepancy between proton form-factor measurements. Phys. Rev. C 69, 022201 (2004).

    Article  ADS  Google Scholar 

  41. Ye, Z., Arrington, J., Hill, R. J. & Lee, G. Proton and neutron electromagnetic form factors and uncertainties. Phys. Lett. B 777, 8–15 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with O. Benhar, C. C. degli Atti, W. Cosyn, A. Lovato, N. Rocco, M. Sargsian, M. Strikman and R. Wiringa, and the contribution of the Jefferson Lab target group and technical staff for design and construction of the tritium target and their support running this experiment. This work was supported in part by the Department of Energy’s Office of Science, Office of Nuclear Physics, under contracts DE-AC02-05CH11231, DE-FG02-88ER40410, DE-SC0014168 and DE-FG02-96ER40950, the National Science Foundation, including grant NSF PHY-1714809, and DOE contract DE-AC05-06OR23177 under which JSA, LLC operates JLab.

Author information

Authors and Affiliations

Authors

Contributions

J.A., D.Day, D.W.H., P.S. and Z.H.Y. were the experiment co-spokespersons. S.L., N.S., R.C.-T., Z.H.Y., R.E.M. and F.H. made significant contributions the set-up of the experiment and/or data analysis. R.J.H., D.M. and P.S. contributed to the design and operation of the tritium target. The full collaboration participated in the data collection and/or detector calibration and data analysis.

Corresponding author

Correspondence to J. Arrington.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Patrick Achenbach, Ivica Friščić and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Target window contamination.

Number of events versus position in the target along the beamline for the 3H cell (blue) and for the empty target (black) after scaling to the same luminosity as the target windows. The shaded region indicates the region used in the analysis.

Extended Data Fig. 2 3He/2H per-nucleon cross-section ratios.

3He/2H ratio for this work and ref. 11 are shown. Error bars show the combined statistical and uncorrelated systematic uncertainty (1σ range); the normalization uncertainties are 1.18% for this work, 1.8% for E02-019.

Extended Data Table 1 Cross-section ratios at 17.00° as shown in Fig. 2
Extended Data Table 2 Cross-section ratios at 20.88° as shown in Fig. 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Cruz-Torres, R., Santiesteban, N. et al. Revealing the short-range structure of the mirror nuclei 3H and 3He. Nature 609, 41–45 (2022). https://doi.org/10.1038/s41586-022-05007-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05007-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing