Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Perovskite superlattices with efficient carrier dynamics

Abstract

Compared with their three-dimensional (3D) counterparts, low-dimensional metal halide perovskites (2D and quasi-2D; B2An−1MnX3n+1, such as B = R-NH3+, A = HC(NH2)2+, Cs+; M = Pb2+, Sn2+; X = Cl, Br, I) with periodic inorganic–organic structures have shown promising stability and hysteresis-free electrical performance1,2,3,4,5,6. However, their unique multiple-quantum-well structure limits the device efficiencies because of the grain boundaries and randomly oriented quantum wells in polycrystals7. In single crystals, the carrier transport through the thickness direction is hindered by the layered insulating organic spacers8. Furthermore, the strong quantum confinement from the organic spacers limits the generation and transport of free carriers9,10. Also, lead-free metal halide perovskites have been developed but their device performance is limited by their low crystallinity and structural instability11. Here we report a low-dimensional metal halide perovskite BA2MAn−1SnnI3n+1 (BA, butylammonium; MA, methylammonium; n = 1, 3, 5) superlattice by chemical epitaxy. The inorganic slabs are aligned vertical to the substrate and interconnected in a criss-cross 2D network parallel to the substrate, leading to efficient carrier transport in three dimensions. A lattice-mismatched substrate compresses the organic spacers, which weakens the quantum confinement. The performance of a superlattice solar cell has been certified under the quasi-steady state, showing a stable 12.36% photoelectric conversion efficiency. Moreover, an intraband exciton relaxation process may have yielded an unusually high open-circuit voltage (VOC).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterizations of the BA2SnI4 superlattice.
Fig. 2: Carrier transport properties of the BA2SnI4 superlattice.
Fig. 3: Strain properties of BA2MAn−1SnnI3n+1 superlattices.
Fig. 4: Photovoltaic studies of Bi3+-alloyed superlattice.
Fig. 5: Dynamics analysis of hot electrons in Bi3+-alloyed superlattices.

Similar content being viewed by others

Data availability

All data are available in the manuscript or supplementary materials.

References

  1. Zhang, W., Eperon, G. E. & Snaith, H. J. Metal halide perovskites for energy applications. Nat. Energy 1, 16048 (2016).

    Article  CAS  ADS  Google Scholar 

  2. de Arquer, F. P. G., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Article  ADS  Google Scholar 

  3. Lei, Y., Chen, Y. & Xu, S. Single-crystal halide perovskites: opportunities and challenges. Matter 4, 2266–2308 (2021).

    Article  CAS  Google Scholar 

  4. Park, N. G. Research direction toward scalable, stable, and high efficiency perovskite solar cells. Adv. Energy Mater. 10, 1903106 (2020).

    Article  CAS  Google Scholar 

  5. Blancon, J.-C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Grancini, G. & Nazeeruddin, M. K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 4, 4–22 (2019).

    Article  CAS  ADS  Google Scholar 

  8. Liu, Y. et al. Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection. Matter 1, 465–480 (2019).

    Article  Google Scholar 

  9. Blancon, J.-C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 2254 (2018).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  10. Gélvez-Rueda, M. C. et al. Overcoming the exciton binding energy in two-dimensional perovskite nanoplatelets by attachment of conjugated organic chromophores. Nat. Commun. 11, 1901 (2020).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  11. Ke, W. & Kanatzidis, M. G. Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 10, 965 (2019).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  12. Soe, C. M. M. et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl Acad. Sci. USA 116, 58–66 (2019).

    Article  PubMed  ADS  CAS  Google Scholar 

  13. Chen, A. Z. et al. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nat. Commun. 9, 1336 (2018).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  14. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Lei, Y. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 583, 790–795 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Tsai, H. et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 360, 67–70 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Tsai, H. et al. Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9, 2130 (2018).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  18. Liu, S. et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 5, eaav9445 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Cheng, B. et al. Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. Commun. Phys. 1, 80 (2018).

    Article  CAS  Google Scholar 

  20. Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).

  21. Chatterjee, S. & Pal, A. J. Influence of metal substitution on hybrid halide perovskites: towards lead-free perovskite solar cells. J. Mater. Chem. A 6, 3793–3823 (2018).

    Article  CAS  Google Scholar 

  22. Abdel-Shakour, M. et al. High‐efficiency tin halide perovskite solar cells: the chemistry of tin (II) compounds and their interaction with Lewis base additives during perovskite film formation. Sol. RRL 5, 2000606 (2021).

    Article  CAS  Google Scholar 

  23. Ruppel, W. & Wurfel, P. Upper limit for the conversion of solar energy. IEEE Trans. Electron Devices 27, 877–882 (1980).

    Article  ADS  Google Scholar 

  24. Ulatowski, A. M. et al. Charge-carrier trapping dynamics in bismuth-doped thin films of MAPbBr3 perovskite. J. Phys. Chem. Lett. 11, 3681–3688 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Nayak, P. K. et al. Impact of Bi3+ heterovalent doping in organic–inorganic metal halide perovskite crystals. J. Am. Chem. Soc. 140, 574–577 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Li, C. et al. Highly conductive n-type CH3NH3PbI3 single crystals doped with bismuth donors. J. Mater. Chem. C 8, 3694–3704 (2020).

    Article  CAS  Google Scholar 

  27. Bartolome, J. et al. Huge photostability enhancement in bismuth-doped methylammonium lead iodide hybrid perovskites by light-induced transformation. Chem. Mater. 31, 3662–3671 (2019).

    Article  CAS  Google Scholar 

  28. Hu, Y. et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett. 2, 2219–2227 (2017).

    Article  CAS  Google Scholar 

  29. Lyu, F. et al. Bi3+ doped 2D Ruddlesden–Popper organic lead halide perovskites. J. Mater. Chem. A 7, 15627–15632 (2019).

    Article  CAS  Google Scholar 

  30. Kruse, O., Rupprecht, J., Mussgnug, J. H., Dismukes, G. C. & Hankamer, B. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem. Photobiol. Sci. 4, 957–970 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Lindholm, F. A., Fossum, J. G. & Burgess, E. L. Application of the superposition principle to solar-cell analysis. IEEE Trans. Electron Devices 26, 165–171 (1979).

    Article  ADS  Google Scholar 

  32. Marsen, B., Klemz, S., Unold, T. & Schock, H. W. Investigation of the sub‐bandgap photoresponse in CuGaS2:Fe for intermediate band solar cells. Prog. Photovolt. Res. Appl. 20, 625–629 (2012).

    Article  CAS  Google Scholar 

  33. Halim, M. A. Harnessing sun’s energy with quantum dots based next generation solar cell. Nanomaterials 3, 22–47 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of pn junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  ADS  Google Scholar 

  35. Lei, Y. et al. Controlled homoepitaxial growth of hybrid perovskites. Adv. Mater. 30, 1705992 (2018).

    Article  ADS  CAS  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  ADS  Google Scholar 

  37. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  38. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  ADS  CAS  Google Scholar 

  40. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  ADS  Google Scholar 

  41. Yang, D. et al. Functionality-directed screening of Pb-free hybrid organic–inorganic perovskites with desired intrinsic photovoltaic functionalities. Chem. Mater. 29, 524–538 (2017).

    Article  CAS  Google Scholar 

  42. Powell, K. M. & Yoon, H. P. Depth-dependent EBIC microscopy of radial-junction Si micropillar arrays. Appl. Microsc. 50, 17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Xiang for constructive feedback on preparing the manuscript and D. Fenning for inspiring discussions on the data analysis. This work was supported by a Sloan Research Fellowship from the Alfred P. Sloan Foundation and a Lattimer Faculty Research Fellowship from the University of California, San Diego. The microfabrication involved in this work was performed at the San Diego Nanotechnology Infrastructure (SDNI) of the University of California, San Diego, a member of the National Nanotechnology Coordinated Infrastructure, which was supported by the National Science Foundation (grant no. ECCS-1542148). This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy, Office of Science at Los Alamos National Laboratory, Stanford Nano Shared Facilities (SNSF, supported by the National Science Foundation under award ECCS-1542152) and Stanford Synchrotron Radiation Laboratory (SSRL, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences). The computational work used the Extreme Science and Engineering Discovery Environment (XSEDE), which was supported by the National Science Foundation (grant number OCI-1053575). F.B. acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Fuels from Sunlight Hub under award number DE-SC0021266. Y.W. acknowledges support from the Office of Naval Research (award N00014-19-1-2453) and the Molecular Foundry, which was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

S.X. and Y. Lei conceived the idea. Y. Li carried out the DFT calculations. Y. Lei, C.L. and R.W. synthesized the materials, prepared the substrates and fabricated the devices. Y. Lei, Q.Y., S.Z., H.G. and Y.C. contributed to the structural characterizations. S.Z. contributed to the grazing-incidence wide-angle X-ray scattering characterizations. F.B. and Y.W. contributed to the transient absorption spectroscopy characterizations. J.Z. contributed to the optical and electrical characterizations. R.Z. carried out the Fourier transform infrared spectroscopy characterizations and the simulations. All authors contributed to analysing the data and commenting on the manuscript.

Corresponding author

Correspondence to Sheng Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Discussions 1–8, Supplementary Figs. 1–38, Supplementary Tables 1 and 2 and Supplementary References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Li, Y., Lu, C. et al. Perovskite superlattices with efficient carrier dynamics. Nature 608, 317–323 (2022). https://doi.org/10.1038/s41586-022-04961-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04961-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing