Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant impacts and the origin and evolution of continents

Abstract

Earth is the only planet known to have continents, although how they formed and evolved is unclear. Here using the oxygen isotope compositions of dated magmatic zircon, we show that the Pilbara Craton in Western Australia, Earth’s best-preserved Archaean (4.0–2.5 billion years ago (Ga)) continental remnant, was built in three stages. Stage 1 zircons (3.6–3.4 Ga) form two age clusters with one-third recording submantle δ18O, indicating crystallization from evolved magmas derived from hydrothermally altered basaltic crust like that in modern-day Iceland1,2. Shallow melting is consistent with giant impacts that typified the first billion years of Earth history3,4,5. Giant impacts provide a mechanism for fracturing the crust and establishing prolonged hydrothermal alteration by interaction with the globally extensive ocean6,7,8. A giant impact at around 3.6 Ga, coeval with the oldest low-δ18O zircon, would have triggered massive mantle melting to produce a thick mafic–ultramafic nucleus9,10. A second low-δ18O zircon cluster at around 3.4 Ga is contemporaneous with spherule beds that provide the oldest material evidence for giant impacts on Earth11. Stage 2 (3.4–3.0 Ga) zircons mostly have mantle-like δ18O and crystallized from parental magmas formed near the base of the evolving continental nucleus12. Stage 3 (<3.0 Ga) zircons have above-mantle δ18O, indicating efficient recycling of supracrustal rocks. That the oldest felsic rocks formed at 3.9–3.5 Ga (ref. 13), towards the end of the so-called late heavy bombardment4, is not a coincidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Zircon oxygen isotope data for magmatic samples superimposed on the geological map of the Pilbara Craton, Western Australia.
Fig. 2: Zircon δ18O (‰) versus age (Ga) for individual magmatic zircon grains from the Pilbara Craton.
Fig. 3: Geodynamic cartoons illustrating the three-stage evolution of the Pilbara Craton.
Fig. 4: Zircon δ18O (‰) versus age (Ga) for individual magmatic zircon grains from the Yilgarn Craton and Acasta Gneiss Complex.

Similar content being viewed by others

Data availability

New oxygen isotope data were collected from 56 samples from the Pilbara and Yilgarn cratons (Supplementary Table 1). Data from other samples are from: ref. 24 (sample 142661), ref. 16 (samples 142535, 142974, 142981, 153190, 160212, 160498, 160730, 169028, 169045, 178230, 178231, 180057, 195893, 195894, 216546, 229913, 193410, 97969255A, 96969080, 178102, 193434, 169068, 96969087, 98267, 178196, 185921, 179446, 185985, 96969039, 198212, 96969016, 178194), ref. 25 (samples 15TKPB23, OGC, 15TKPB25, 15TKPB26, 15TKPB27) and ref. 63 (samples TKN49, TKN58, TKN74). SIMS oxygen isotope analysis session details, including reference material values, are provided in Supplementary Table 1. Sample details, summary zircon oxygen isotope compositions and U–Pb age data are provided in Supplementary Table 2. The U–Pb isotopic ratios for the analysed samples can also be downloaded from http://dmp.wa.gov.au/geochron/. Whole-rock geochemical data are given in Supplementary Table 3. All the supplementary data and full thin-section images of samples 216545 and 216594 are available to download from the EarthChem library (https://doi.org/10.26022/IEDA/112307).

References

  1. Bindeman, I. et al. Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB. Terra Nova 24, 227–232 (2012).

    Article  ADS  CAS  Google Scholar 

  2. Marks, N., Zierenberg, R. A. & Schiffman, P. Strontium and oxygen isotopic profiles through 3 km of hydrothermally altered oceanic crust in the Reykjanes geothermal system, Iceland. Chem. Geol. 412, 34–47 (2015).

    Article  ADS  CAS  Google Scholar 

  3. Johnson, T. E. et al. An impact melt origin for Earth’s oldest known evolved rocks. Nat. Geosci. 11, 795–799 (2018).

    Article  ADS  CAS  Google Scholar 

  4. Bottke, W. F. & Norman, M. D. The Late Heavy Bombardment. Annu. Rev. Earth Planet. Sci. 45, 619–647 (2017).

  5. Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Flament, N., Coltice, N. & Rey, P. F. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 275, 326–336 (2008).

    Article  ADS  CAS  Google Scholar 

  7. Osinski, G. R. et al. Impact-generated hydrothermal systems on Earth and Mars. Icarus 224, 347–363 (2013).

    Article  ADS  Google Scholar 

  8. Kring, D. A., Whitehouse, M. J. & Schmieder, M. Microbial sulfur isotope fractionation in the Chicxulub hydrothermal system. Astrobiology 21, 103–114 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ingle, S. & Coffin, M. F. Impact origin for the greater Ontong Java Plateau? Earth Planet. Sci. Lett. 218, 123–134 (2004).

    Article  ADS  CAS  Google Scholar 

  10. Jones, A. P., Wunemann, K. & Price, G. D. Modeling impact volcanism as a possible origin for the Ontong Java Plateau. Geol. Soc. Am. Spec. Pap. 388, 711–720 (2005).

    Google Scholar 

  11. Schmieder, M. & Kring, D. A. Earth’s impact events through geologic time: a list of recommended ages for terrestrial impact structures and deposits. Astrobiology 20, 91–141 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Johnson, T. E., Brown, M., Kaus, B. J. & VanTongeren, J. A. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2014).

    Article  ADS  CAS  Google Scholar 

  13. Condie, K. in Earth’s Oldest Rocks (eds Van Kranendonk, M. et al.) 239–253 (Elsevier, 2019).

  14. Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Korenaga, J. Was there land on the early Earth? Life 11, 1142 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Smithies, R. et al. Oxygen isotopes in zircon trace the origins of Earth’s earliest continental crust. Nature 592, 70–75 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Koeberl, C. The record of impact processes on the early Earth: a review of the first 2.5 billion years. Geol. Soc. Am. Spec. Pap. 405, 1–22 (2006).

  18. Hansen, V. L. Impact origin of Archean cratons. Lithosphere 7, 563–578 (2015).

    Article  ADS  Google Scholar 

  19. Salisbury, J. W. & Ronca, L. B. The origin of continents. Nature 210, 669–670 (1966).

    Article  ADS  Google Scholar 

  20. Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petr. 150, 561–580 (2005).

    Article  ADS  CAS  Google Scholar 

  21. Bindeman, I. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev. Mineral. Geochem. 69 445–478 (2008).

  22. Troch, J., Ellis, B. S., Harris, C., Bachmann, O. & Bindeman, I. N. Low-δ18O silicic magmas on Earth: a review. Earth-Sci. Rev. 208, 103299 (2020).

  23. Hickman, A. H. East Pilbara Craton: A Record of One Billion Years in the Growth of Archean Continental Crust (Geological Survey of Western Australia, 2021).

  24. Van Kranendonk, M. J., Kirkland, C. L. & Cliff, J. Oxygen isotopes in Pilbara Craton zircons support a global increase in crustal recycling at 3.2 Ga. Lithos 228–229, 90–98 (2015).

    Article  CAS  Google Scholar 

  25. Petersson, A. et al. A new 3.59 Ga magmatic suite and a chondritic source to the east Pilbara Craton. Chem. Geol. 511, 51–70 (2019).

    Article  ADS  CAS  Google Scholar 

  26. Pidgeon, R., Nemchin, A. & Whitehouse, M. J. The effect of weathering on U–Th–Pb and oxygen isotope systems of ancient zircons from the Jack Hills, Western Australia. Geochim. Cosmochim. Acta 197, 142–166 (2017).

    Article  ADS  CAS  Google Scholar 

  27. Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. Earth’s earliest evolved crust generated in an Iceland-like setting. Nat. Geosci. 7, 529–533 (2014).

    Article  ADS  CAS  Google Scholar 

  28. Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  ADS  CAS  Google Scholar 

  29. Sizova, E., Gerya, T., Stüwe, K. & Brown, M. Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambrian Res. 271, 198–224 (2015).

    Article  ADS  CAS  Google Scholar 

  30. Hofmeister, A. M. Effect of a Hadean terrestrial magma ocean on crust and mantle evolution. J. Geophys. Res. 88, 4963–4983 (1983).

    Article  ADS  CAS  Google Scholar 

  31. Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable continents did not form by subduction. Nature 543, 239–242 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Jones, A. P. Meteorite impacts as triggers to large igneous provinces. Elements 1, 277–281 (2005).

    Article  Google Scholar 

  33. O’Neill, C., Marchi, S., Zhang, S. & Bottke, W. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).

    Article  ADS  CAS  Google Scholar 

  34. Gerya, T. Precambrian geodynamics: concepts and models. Gondwana Res. 25, 442–463 (2014).

    Article  ADS  Google Scholar 

  35. Herzberg, C. & Rudnick, R. Formation of cratonic lithosphere: an integrated thermal and petrological model. Lithos 149, 4–15 (2012).

    Article  ADS  CAS  Google Scholar 

  36. Buick, R. et al. Record of emergent continental crust 3.5 billion years ago in the Pilbara Craton of Australia. Nature 375, 574–577 (1995).

    Article  ADS  CAS  Google Scholar 

  37. Simonson, B. M., Davies, D. & Hassler, S. W. Discovery of a layer of probable impact melt spherules in the Late Archaean Jeerinah Formation, Fortescue Group, Western Australia. Aust. J. Earth Sci. 47, 315–325 (2000).

    Article  ADS  Google Scholar 

  38. Simonson, B. M. et al. Geochemistry of 2.63–2.49 Ga impact spherule layers and implications for stratigraphic correlations and impact processes. Precambrian Res. 175, 51–76 (2009).

    Article  ADS  CAS  Google Scholar 

  39. Gamal El Dien, H. et al. The largest plagiogranite on Earth formed by re-melting of juvenile proto-continental crust. Commun. Earth Environ. 2, 1–16 (2021).

    Article  Google Scholar 

  40. Bindeman, I. N. & Valley, J. W. Formation of low-δ18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA. Geology 28, 719–722 (2000).

    Article  ADS  CAS  Google Scholar 

  41. Bindeman, I. N. & Valley, J. W. Low-δ18O rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. J. Petrol. 42, 1491–1517 (2001).

    Article  ADS  CAS  Google Scholar 

  42. Byerly, B. L., Kareem, K., Bao, H. & Byerly, G. R. Early Earth mantle heterogeneity revealed by light oxygen isotopes of Archaean komatiites. Nat. Geosci. 10, 871–875 (2017).

    Article  ADS  CAS  Google Scholar 

  43. Puchtel, I. S. et al. Insights into early Earth from Barberton komatiites: evidence from lithophile isotope and trace element systematics. Geochim. Cosmochim. Acta 108, 63–90 (2013).

    Article  ADS  CAS  Google Scholar 

  44. Salerno, R., Vervoort, J., Fisher, C., Kemp, A. & Roberts, N. The coupled Hf–Nd isotope record of the early Earth in the Pilbara Craton. Earth Planet. Sci. Lett. 572, 117139 (2021).

    Article  CAS  Google Scholar 

  45. Murphy, D. et al. Combined Sm-Nd, Lu-Hf, and 142Nd study of Paleoarchean basalts from the East Pilbara Terrane, Western Australia. Chem. Geol. 578, 120301 (2021).

    Article  ADS  CAS  Google Scholar 

  46. Hartnady, M. I., Kirkland, C. L., Smithies, R. H., Johnson, S. P. & Johnson, T. E. Pb isotope insight into the formation of the Earth’s first stable continents. Earth Planet. Sci. Lett. 578, 117319 (2022).

    Article  CAS  Google Scholar 

  47. Kerr, A. C. & Mahoney, J. J. Oceanic plateaus: problematic plumes, potential paradigms. Chem. Geol. 241, 332–353 (2007).

    Article  ADS  CAS  Google Scholar 

  48. Kring, D. A. et al. Probing the hydrothermal system of the Chicxulub impact crater. Sci. Adv. 6, eaaz3053 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fagereng, Å., Harris, C., La Grange, M. & Stevens, G. Stable isotope study of the Archaean rocks of the Vredefort impact structure, central Kaapvaal Craton, South Africa. Contrib. Mineral. Petr. 155, 63–78 (2008).

    Article  ADS  CAS  Google Scholar 

  50. Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. The birth of a cratonic nucleus: lithogeochemical evolution of the 4.02–2.94 Ga Acasta Gneiss Complex. Precambrian Res. 281, 453–472 (2016).

    Article  ADS  CAS  Google Scholar 

  51. Bauer, A. et al. Hafnium isotopes in zircons document the gradual onset of mobile-lid tectonics. Geochem. Perspect. Lett. 14, 1–6 (2020).

    Google Scholar 

  52. Mojzsis, S. J. et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Osinski, G. R., Cockell, C. S., Pontefract, A. & Sapers, H. M. The role of meteorite impacts in the origin of life. Astrobiology 20, 1121–1149 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bottke, W. F. et al. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Martin, D. M. B., Hocking, R. M., Riganti, A. & Tyler, I. M. Geological Map of Western Australia 1:2 500 000 (Geological Survey of Western Australia, 2015).

  56. Wingate, M. & Johnson, S. 216545: metatonalite, Mujee Pool; Geochronology Record 1566 (Geological Survey of Western Australia, 2019).

  57. Wingate, M. & Johnson, S. 216594: metatonalite, Mujee Pool; Geochronology Record 1567 (Geological Survey of Western Australia, 2019).

  58. Pidgeon, R., Nemchin, A. & Cliff, J. Interaction of weathering solutions with oxygen and U–Pb isotopic systems of radiation-damaged zircon from an Archean granite, Darling Range Batholith, Western Australia. Contrib. Mineral. Petr. 166, 511–523 (2013).

    Article  ADS  CAS  Google Scholar 

  59. Black, L. P. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205, 115–140 (2004).

    Article  ADS  CAS  Google Scholar 

  60. Nasdala, L. et al. Zircon M257—a homogeneous natural reference material for the ion microprobe U‐Pb analysis of zircon. Geostand. Geoanal. Res. 32, 247–265 (2008).

    Article  CAS  Google Scholar 

  61. Cavosie, A. J. et al. The origin of high δ18O zircons: marbles, megacrysts, and metamorphism. Contrib. Mineral. Petr. 162, 961–974 (2011).

    Article  ADS  CAS  Google Scholar 

  62. Morris, P. A. Composition of Geological Survey of Western Australia Geochemical Reference Materials (Geological Survey of Western Australia, 2000).

  63. Hammerli, J., Kemp, A. I. & Jeon, H. An Archean Yellowstone? Evidence from extremely low δ18O in zircons preserved in granulites of the Yilgarn Craton, Western Australia. Geology 46, 411–414 (2018).

    Article  ADS  CAS  Google Scholar 

  64. Hiess, J., Bennett, V. C., Nutman, A. P. & Williams, I. S. In situ U-Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: new insights to making old crust. Geochim. Cosmochim. Acta 73, 4489–4516 (2009).

    Article  ADS  CAS  Google Scholar 

  65. King, E. M., Valley, J. W., Davis, D. W. & Edwards, G. R. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: indicator of magmatic source. Precambrian Res. 92, 365–387 (1998).

    Article  ADS  CAS  Google Scholar 

  66. Whitehouse, M. J., Nemchin, A. A. & Pidgeon, R. T. What can Hadean detrital zircon really tell us? A critical evaluation of their geochronology with implications for the interpretation of oxygen and hafnium isotopes. Gondwana Res. 51, 78–91 (2017).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Western Australian Government Exploration Incentive Scheme (EIS). T.E.J. and C.L.K. acknowledge support from Curtin University and funding from the Australian Government through Australian Research Council Discovery (DP200101104) and Linkage (LP180100199) projects, respectively. We thank L. Martin and M. Aleshin at the Centre for Microscopy, Characterisation and Analysis, the University of Western Australia, for assistance with analyses and M. Prause for drafting figures. R.H.S. and Y.L. publish with the permission of the Executive Director, Geological Survey of Western Australia.

Author information

Authors and Affiliations

Authors

Contributions

The authors collectively conceived the research. T.E.J. wrote the original draft with input from all authors and all authors contributed to its subsequent revision. C.L.K. and Y.L. contributed to the analysis of samples and all authors engaged in the interpretation of the data.

Corresponding author

Correspondence to Tim E. Johnson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Elizabeth Bell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Cathodoluminescence (CL) images.

Representative CL images of zircon grains for sample 216594 (top) and 216545 (bottom), showing spot numbers (italics) and δ18O values (in parentheses). The spot analyses targeted crystalline areas of grains that yielded concordant U–Pb ages, and record low 16O1H/16O ratios and show no correlation between zircon δ18O and any measure of secondary processes (i.e., 16O1H/16O, U, Th, Th/U or concordance), suggesting the δ18O values represent primary magmatic signatures.

Extended Data Fig. 2 Whole-rock geochemical data.

Plots of whole-rock Sr/Y (a), Gd/Yb (b) and Mg# (c) versus median zircon δ18O value of magmatic samples from the Pilbara (white disks) and Yilgarn (black) cratons (Supp. Table 3). The isotopically-light zircon grains (δ18O < 4.7‰) come from samples with low whole-rock Sr/Y and Gd/Yb ratios, consistent with their derivation from a shallow, hydrothermally-altered source. With the exception of a single mafic amphibolite, these samples also have low or very low Mg#, consistent with highly-fractionated magmatic sources, conceivably the uppermost layers of a crystallised magma ocean. Samples containing zircon with mantle-like and isotopically-heavy median δ18O values show a greater compositional diversity consistent with the derivation of many from much deeper crustal levels with the stability field of garnet.

Extended Data Fig. 3 Age vs δ18O for other cratons.

a, Yilgarn Craton; b, Acasta Gneiss Complex (data from ref. 50); c, West Greenland (data from ref. 64); d, Superior Craton (data from ref. 65); e, filtered detrital zircon data from the Jack Hills, Narryer Terrane, Western Australia (data from ref. 66).

Supplementary information

Supplementary Information

The titles and legends for Supplementary Tables 1–3.

Supplementary Tables

Supplementary Tables 1–3.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, T.E., Kirkland, C.L., Lu, Y. et al. Giant impacts and the origin and evolution of continents. Nature 608, 330–335 (2022). https://doi.org/10.1038/s41586-022-04956-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04956-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing