Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantized current steps due to the a.c. coherent quantum phase-slip effect


The a.c. Josephson effect predicted in 19621 and observed experimentally in 19632 as quantized ‘voltage steps’ (the Shapiro steps) from photon-assisted tunnelling of Cooper pairs is among the most fundamental phenomena of quantum mechanics and is vital for metrological quantum voltage standards. The physically dual effect, the a.c. coherent quantum phase slip (CQPS), photon-assisted tunnelling of magnetic fluxes through a superconducting nanowire, is envisaged to reveal itself as quantized ‘current steps’3,4. The basic physical significance of the a.c. CQPS is also complemented by practical importance in future current standards, a missing element for closing the quantum metrology triangle5,6. In 2012, the CQPS was demonstrated as superposition of magnetic flux quanta in superconducting nanowires 7. However, the direct flat current steps in superconductors, the only unavailable basic effect of superconductivity to date, was unattainable due to lack of appropriate materials and challenges in circuit engineering. Here we report the direct observation of the dual Shapiro steps in a superconducting nanowire. The sharp steps are clear up to 26 GHz frequency with current values 8.3 nA and limited by the present set-up bandwidth. The current steps were theoretically predicted in small Josephson junctions 30 years ago5. However, unavoidable broadening in Josephson junctions prevents their direct experimental observation8,9. We solve this problem by placing a thin NbN nanowire in an inductive environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of the microwave-induced transport in dual circuits.
Fig. 2: Device and transport.
Fig. 3: Inverse Shapiro steps in four-probe IV measurements.
Fig. 4: Oscillations of dV/dI peaks.

Similar content being viewed by others

Data availability

The datasets used to produce the plots are available in the Open Science Framework (OSF) repository,


  1. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    Article  ADS  Google Scholar 

  2. Shapiro, S. Josephson currents in superconducting tunneling: the effect of microwaves and other observations. Phys. Rev. Lett. 11, 80–82 (1963).

    Article  ADS  CAS  Google Scholar 

  3. Averin, D. V. & Likharev, K. K. in Mesoscopic Phenomena in Solids (eds Altshuler, B. L. et al.) Ch. 6 (North Holland, 1991).

  4. Mooij, J. E. & Nazarov, Y. V. Superconducting nanowires as quantum phase-slip junctions. Nat. Phys. 2, 169–172 (2006).

    Article  CAS  Google Scholar 

  5. Averin, D. V., Zorin, A. B. & Likharev, K. K. Bloch oscillations in small Josephson junctions. Sov. Phys. JETP 61, 407–413 (1985).

    ADS  Google Scholar 

  6. Pekola, J. P. et al. Single-electron current sources: toward a refined definition of the ampere. Rev. Mod. Phys. 85, 1421–1472 (2013).

    Article  ADS  Google Scholar 

  7. Astafiev, O. V. et al. Coherent quantum phase slip. Nature 484, 355–358 (2012).

    Article  ADS  CAS  Google Scholar 

  8. Zener, C. M. Non-adiabatic crossing of energy levelsproc. Proc. R. Soc. Lond. A (1932).

  9. Golubev, D. S. & Zaikin, A. D. Quantum tunneling of the order parameter in superconducting nanowires. Phys. Rev. B 64, 014504 (2001).

    Article  ADS  Google Scholar 

  10. Schön, G. & Zaikin, A. D. Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198, 237–412 (1990).

    Article  ADS  Google Scholar 

  11. Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw Hill, 1996).

  12. Kuzmin, L. S. & Haviland, D. B. Observation of the Bloch oscillations in an ultrasmall Josephson junction. Phys. Rev. Lett. 67, 2890–2893 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Kuzmin, L., Pashkin, Y., Zorin, A. & Claeson, T. Linewidth of Bloch oscillations in small Josephson junctions. Physica B 203, 376–380 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Landau, L. D. On the theory of energy transmission in collissions. I. Phys. Zs. Sowjet 1, 88 (1932).

    CAS  Google Scholar 

  15. Zaikin, A. D., Golubev, D. S., van Otterlo, A. & Zimanyi, T. Quantum phase slips and transport in ultrathin superconducting wires. Phys. Rev. Lett. 78, 1552 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Peltonen, J. T. et al. Coherent flux tunneling through NbN nanowires. Phys. Rev. B 88, 220506 (2013).

    Article  ADS  Google Scholar 

  17. Peltonen, J. T. et al. Coherent dynamics and decoherence in a superconducting weak link. Phys. Rev. B 94, 180508 (2016).

    Article  ADS  Google Scholar 

  18. de Graaf, S. E. et al. Charge quantum interference device. Nat. Phys. 14, 590–594 (2018).

    Article  Google Scholar 

  19. Linzen, S. et al. Structural and electrical properties of ultrathin niobium nitride films grown by atomic layer deposition. Supercond. Sci. Technol. 30, 035010 (2017).

    Article  ADS  Google Scholar 

  20. Sacépé, B., Feigel’man, M. & Klapwijk, T. M. Quantum breakdown of superconductivity in low-dimensional materials. Nat. Phys. 16, 734–746 (2020).

    Article  Google Scholar 

  21. Zaitsev, A. V. Quasiclassical equations of the theory of superconductivity for contiguous metals and the properties of constricted microcontacts. Sov. Phys. JETP 59, 1015–1024 (1984).

    ADS  Google Scholar 

  22. Abay, S. et al. Charge transport in InAs nanowire Josephson junctions. Phys. Rev. B 89, 214508 (2014).

    Article  ADS  Google Scholar 

  23. de Graaf, S. E., Shaikhaidarov, R., Lindström, T., Tzalenchuk, A. Y. & Astafiev, O. V. Charge control of blockade of Cooper pair tunneling in highly disordered tin nanowires in an inductive environment. Phys. Rev. B 99, 205115 (2019).

    Article  ADS  Google Scholar 

  24. Glück, M., Kolovsky, A. R. & Korsch, H. J. Wannier–Stark resonances in optical and semiconductor superlattices. Phys. Rep. 366, 103–182 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  25. Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect Vol. 1 (John Wiley & Sons, 1982).

  26. Averin, D. V., Nazarov, Y. V. & Odintsov, A. A. Incoherent tunneling of the Cooper pairs and magnetic flux quanta in ultrasmall Josephson junctions. Physica B 165, 945–946 (1990).

    Article  ADS  Google Scholar 

  27. Tien, P. K. & Gordon, J. P. Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys. Rev. 129, 647–651 (1963).

    Article  ADS  Google Scholar 

  28. Roychowdhury, A., Dreyer, M., Anderson, J. R., Lobb, C. J. & Wellstood, F. C. Microwave photon-assisted incoherent Cooper-pair tunneling in a Josephson STM. Phys. Rev. Appl. 4, 034011 (2015).

    Article  ADS  Google Scholar 

  29. Kot, P. et al. Microwave-assisted tunneling and interference effects in superconducting junctions under fast driving signals. Phys. Rev. B 101, 134507 (2020).

    Article  ADS  CAS  Google Scholar 

  30. Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78, 217 (2006).

    Article  ADS  CAS  Google Scholar 

  31. Giblin, S. P. et al. Realisation of a quantum current standard at liquid helium temperature with sub-ppm reproducibility. Metrologia. 57, 025013 (2020).

    Article  ADS  CAS  Google Scholar 

  32. Yamahata, G., Giblin, S. P., Kataoka, M., Karasawa, T. & Fujiwara, A. High-accuracy current generation in the nanoampere regime from a silicon single-trap electron pump. Sci. Rep. 7, 45137 (2017).

    Article  ADS  CAS  Google Scholar 

Download references


This work was supported by European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 862660/QUANTUM E-LEAPS and Engineering and Physical Sciences Research Council (EPSRC) grant no. EP/T004088/1.

Author information

Authors and Affiliations



O.V.A. proposed, simulated and planned the experiment and circuit design and analysed data. R.S.S. made the major contribution to the design and fabrication of various samples, planned the experiment and analysed data. R.S.S. made the experiments with an important contribution from K.H.K. J.W.D., I.V.A., V.N.A. and K.H.K. designed and fabricated samples, analysed data and prepared figures. S.L., M.Z. and E.V.I. developed technology and M.Z. and S.L. fabricated NbN films. D.S.G. provided theory and simulations of the experiment. O.V.A., E.V.I., D.S.G. and V.N.A. wrote the manuscript.

Corresponding author

Correspondence to Oleg V. Astafiev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature thanks Mikael Fogelstrom, Masaya Kataoka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikhaidarov, R.S., Kim, K.H., Dunstan, J.W. et al. Quantized current steps due to the a.c. coherent quantum phase-slip effect. Nature 608, 45–49 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing