Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Response of the East Antarctic Ice Sheet to past and future climate change

Abstract

The East Antarctic Ice Sheet contains the vast majority of Earth’s glacier ice (about 52 metres sea-level equivalent), but is often viewed as less vulnerable to global warming than the West Antarctic or Greenland ice sheets. However, some regions of the East Antarctic Ice Sheet have lost mass over recent decades, prompting the need to re-evaluate its sensitivity to climate change. Here we review the response of the East Antarctic Ice Sheet to past warm periods, synthesize current observations of change and evaluate future projections. Some marine-based catchments that underwent notable mass loss during past warm periods are losing mass at present but most projections indicate increased accumulation across the East Antarctic Ice Sheet over the twenty-first century, keeping the ice sheet broadly in balance. Beyond 2100, high-emissions scenarios generate increased ice discharge and potentially several metres of sea-level rise within just a few centuries, but substantial mass loss could be averted if the Paris Agreement to limit warming below 2 degrees Celsius is satisfied.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Grounding-line extent and characteristics of the EAIS at selected times in the past, present and future.
Fig. 2: Published estimates of the net mass balance of the EAIS.
Fig. 3: Comparison between published estimates of modern and palaeo (last deglaciation) rates of grounding-line migration and ice-surface-elevation change.
Fig. 4: Modern oceanic conditions and characteristic shelf/slope regimes around East Antarctica in relation to recent ice-sheet-mass changes.
Fig. 5: Recent temporal and spatial trends in Antarctic snow accumulation and surface melt.
Fig. 6: Projected sea-level contribution from the EAIS at 2100, 2300 and 2500 under very high, medium and low emissions scenarios.

References

  1. The IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    Article  ADS  CAS  Google Scholar 

  2. Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018).

    Article  ADS  Google Scholar 

  3. Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018). Uses ice-surface-velocity datasets and a SMB model to suggest that, overall, ice discharge from glaciers draining the EAIS was remarkably stable between around 2008 and 2013/2015, whereas those in West Antarctica increased.

    Article  ADS  Google Scholar 

  4. Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019). Uses revised drainage inventory, ice thickness and ice-velocity data, together with a SMB model, to calculate Antarctic Ice Sheet mass balance (1979–2017) and suggest that East Antarctica was an important participant in mass loss.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schröder, L. et al. Four decades of surface elevation change of the Antarctic Ice Sheet from multi-mission satellite altimetry. Cryosphere 13, 427–449 (2019).

    Article  ADS  Google Scholar 

  6. Shepherd, A. et al. Trends in Antarctic Ice Sheet elevation and mass. Geophys. Res. Lett. 46, 8174–8183 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Velicogna, I. et al. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 47, e2020GL087291 (2020).

    Article  ADS  Google Scholar 

  9. Wang, L., Davis, J. L. & Howat, I. M. Complex patterns of Antarctic ice sheet mass change resolved by time-dependent rate modelling of GRACE and GRACE follow-on observations. Geophys. Res. Lett. 48, e2020GL090961 (2021). Introduces a new approach for analysing satellite gravimetry observations to estimate time-varying mass-change rates in Antarctica and finds a continuously accelerating trend of mass loss in Wilkes Land, East Antarctica, over the past two decades.

    ADS  Google Scholar 

  10. Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).

    Article  ADS  CAS  Google Scholar 

  11. Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Fürst, J. J. et al. The safety band of Antarctic ice shelves. Nat. Clim. Change 6, 479–482 (2016).

    Article  ADS  Google Scholar 

  17. Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258–262 (2018).

    Article  ADS  CAS  Google Scholar 

  18. Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. A. Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 13903–13909 (2019).

    Article  ADS  Google Scholar 

  19. Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, F03S28 (2007).

    Article  ADS  Google Scholar 

  20. Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978).

    Article  ADS  Google Scholar 

  21. Noble, T. L. et al. The sensitivity of the Antarctic Ice Sheet to a changing climate: past, present and future. Rev. Geophys. 58, e2019RG000663 (2020).

    Article  ADS  Google Scholar 

  22. Sugden, D. E. et al. Preservation of Miocene glacier ice in East Antarctica. Nature 376, 412–414 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Davis, C. H., Li, Y., McConnell, J. R., Frey, M. M. & Hanna, E. Snowfall-driven growth in East Antarctic Ice Sheet mitigates recent sea-level rise. Science 308, 1898–1901 (2005). One of the earliest studies to use satellite radar altimetry to show that sea-level rise was mitigated by snowfall-driven growth of the EAIS (1992–2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Zwally, H. J. et al. Mass changes of the Greenland and Antarctic ice sheets and ice shelves and contributions to sea level rise: 1992–2002. J. Glaciol. 51, 509–527 (2005).

    Article  ADS  Google Scholar 

  25. Payne, A. J. et al. Future sea level change under the Coupled Model Intercomparison Project Phase 5 and Phase 6 scenarios from the Greenland and Antarctic ice sheets. Geophys. Res. Lett. 48, e2020GL091741 (2021).

    Article  ADS  Google Scholar 

  26. Greenbaum, J. S. et al. Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nat. Geosci. 8, 294–298 (2015).

    Article  ADS  CAS  Google Scholar 

  27. Rintoul, S. R. et al. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci. Adv. 2, e1601610 (2016). Presents observations from the calving front of Totten Glacier, East Antarctica, that confirm that warm water enters the ice-shelf cavity through a deep channel, driving high basal-melt rates.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Silvano, A., Rintoul, S. R., Pena-Molino, B. & Williams, G. D. Distribution of water masses and meltwater on the continental shelf near the Totten and Moscow University ice shelves. J. Geophys. Res. Oceans 122, 2050–2068 (2017).

    Article  ADS  Google Scholar 

  29. Ribeiro, N. et al. Warm modified Circumpolar Deep Water intrusions drive ice shelf melt and inhibit Dense Shelf Water formation in Vincennes Bay, East Antarctica. J. Geophys. Res. Oceans 126, e20202JC016998 (2021).

    Article  ADS  Google Scholar 

  30. Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes. Sci. Adv. 2, e1501350 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. Mengel, M. & Levermann, A. Ice plug prevents irreversible discharge from East Antarctica. Nat. Clim. Change 4, 451–455 (2014).

    Article  ADS  Google Scholar 

  32. Flament, T. & Rémy, F. Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry. J. Glaciol. 58, 830–840 (2012).

    Article  ADS  Google Scholar 

  33. Li, X., Rignot, E., Morlighem, M., Mouginot, J. & Scheuchl, B. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophys. Res. Lett. 42, 8049–8056 (2015).

    Article  ADS  Google Scholar 

  34. Li, X., Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015. Geophys. Res. Lett. 43, 6366–6373 (2016).

    Article  ADS  Google Scholar 

  35. Brancato, V. et al. Grounding line retreat of Denman Glacier, East Antarctica, measured with COSMO-SkyMed radar interferometry data. Geophys. Res. Lett. 47, e2019GL086291 (2020). Presents observations of rapid grounding-line retreat (1996–2017/18) along a deep trough from an East Antarctic glacier holding 1.5 m sea-level rise equivalent.

    Article  ADS  Google Scholar 

  36. Miles, B. W. J., Stokes, C. R., Vieli, A. & Cox, N. J. C. Rapid, climate-driven changes in outlet glaciers on the Pacific coast of East Antarctica. Nature 500, 563–566 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea-ice break-up. Cryosphere 11, 427–442 (2017).

    Article  ADS  Google Scholar 

  38. Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Velocity increases at Cook Glacier, East Antarctica, linked to ice shelf loss and a subglacial flood event. Cryosphere 12, 3123–3136 (2018).

    Article  ADS  Google Scholar 

  39. Cook, C. P. et al. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nat. Geosci. 6, 765–769 (2013). Suggests that changes in the provenance of sedimentary material on the Wilkes Land continental shelf can be linked to shifts in the position of the EAIS margin and resulting erosional pathways.

    Article  ADS  CAS  Google Scholar 

  40. Cook, C. P. et al. Sea surface temperature control on the distribution of far-travelled Southern Ocean ice-rafted detritus during the Pliocene. Paleoceanography 29, 533–538 (2014).

    Article  ADS  Google Scholar 

  41. Wilson, D. J. et al. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature 561, 383–386 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Blackburn, T. et al. Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial. Nature 583, 554–559 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015). Uses a coupled ice-sheet/ice-shelf model to show that, if atmospheric warming exceeds 1.5 to 2 °C above present, collapse of ice shelves triggers a centennial-scale to millennial-scale response that includes substantial contributions from East Antarctica’s marine basins under ‘high’ scenarios.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Golledge, N. R., Levy, R. H., McKay, R. M. & Naish, T. R. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophys. Res. Lett. 44, 2343–2351 (2017).

    Article  ADS  Google Scholar 

  46. DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Boening, C., Lebsock, M., Landerer, F. & Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 39, L21501 (2012). Reports the addition of 350 Gt of snowfall over the EAIS from 2009 to 2011 from extreme precipitation events, equivalent to a decrease in global mean sea level at a rate of 0.32 mm year−1  over this three-year period.

    ADS  Google Scholar 

  48. Lenaerts, J. T. M. et al. Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett. 40, 2684–2688 (2013).

    Article  ADS  Google Scholar 

  49. Jones, J. M. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change 6, 917–926 (2016).

    Article  ADS  Google Scholar 

  50. Gwyther, D. E. et al. Intrinsic processes drive variability in basal melting of the Totten Glacier Ice Shelf. Nat. Commun. 9, 3141 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  51. King, M. A. & Watson, C. S. Antarctic surface mass balance: natural variability, noise, and detecting new trends. Geophys. Res. Lett. 47, e2020GL087493 (2020).

    Article  ADS  Google Scholar 

  52. Zachos, J. C., Breza, J. R. & Wise, S. M. Early Oligocene ice-sheet expansion on Antarctica: stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean. Geology 20, 569–573 (1992).

    Article  ADS  CAS  Google Scholar 

  53. Gulick, S. P. S. et al. Initiation and long-term instability of the East Antarctic Ice Sheet. Nature 552, 225–229 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Gasson, E. & Keisling, B. A. The Antarctic ice sheet: a paleoclimate modelling perspective. Oceanography 33, 90–100 (2020).

    Article  Google Scholar 

  55. Naish, T. R. et al. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature 413, 719–723 (2001). Presents evidence of cyclic variability in Ross Sea sediment cores that are linked to the oscillating extent of the EAIS during the Oligocene–Miocene transition.

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Levy, R. et al. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. Proc. Natl Acad. Sci. USA. 113, 3453–3458 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gasson, E., DeConto, R. M., Pollard, D. & Levy, R. H. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Natl Acad. Sci. USA. 113, 3459–3464 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Passchier, S. et al. Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica. Geol. Soc. Am. Bull. 123, 2352–2365 (2011).

    Article  ADS  CAS  Google Scholar 

  59. Lewis, A. R. et al. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Natl Acad. Sci. USA. 105, 10676–10680 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rae, J. W. B. et al. Atmospheric CO2 over the past 66 million years from marine archives. Annu. Rev. Earth Planet. Sci. 49, 609–641 (2021).

    Article  ADS  CAS  Google Scholar 

  61. Sangiori, et al. Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene. Nat. Commun. 9, 317 (2018).

    Article  ADS  CAS  Google Scholar 

  62. Marshalek, J. W. et al. A large West Antarctic Ice Sheet explains early Neogene sea-level amplitude. Nature 600, 450–455 (2021).

    Article  ADS  CAS  Google Scholar 

  63. Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6, eaaz1346 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, J.-Y. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 4 (Cambridge Univ. Press, in press).

  65. Steinthorsdottir, M. et al. The Miocene: the future of the past. Paleoceanogr. Paleoclimatol. 36, e2020PA004037 (2021).

    Google Scholar 

  66. Martínez-Botí, M. A. et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518, 49–54 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  67. Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 7, 10646 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 4 (Cambridge Univ. Press, 2019).

  69. Dumitru, O. A. et al. Constraints on global mean sea level during Pliocene warmth. Nature 574, 233–236 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Grant, G. R. et al. The amplitude and origin of sea-level variability during the Pliocene epoch. Nature 574, 237–241 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Dolan, A. M. et al. Sensitivity of Pliocene ice sheets to orbital forcing. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 98–110 (2011).

    Article  Google Scholar 

  73. Webb, P. N., Harwood, D. M., McKelvey, B. C., Mercer, J. H. & Stott, L. D. Cenozoic marine sedimentation and ice volume on the East Antarctic craton. Geology 12, 287–291 (1984).

    Article  ADS  Google Scholar 

  74. Scherer, R., DeConto, R., Pollard, D. & Alley, R. B. Windblown Pliocene diatoms and East Antarctic Ice Sheet retreat. Nat. Commun. 7, 12957 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bertram, R. A. et al. Pliocene deglacial event timelines and the biogeochemical response offshore Wilkes Subglacial Basin, East Antarctica. Earth Planet. Sci. Lett. 494, 109–116 (2018).

    Article  ADS  CAS  Google Scholar 

  76. Taylor-Silva, B. I. & Riesselman, C. R. Polar frontal migration in the warm late Pliocene: diatom evidence from the Wilkes Land margin, East Antarctica. Paleoceanogr. Paleoclimatol. 33, 76–92 (2018).

    Article  ADS  Google Scholar 

  77. Williams, T. et al. Evidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early Pliocene. Earth Planet. Sci. Lett. 290, 351–361 (2010).

    Article  ADS  CAS  Google Scholar 

  78. Aitken, A. R. A. et al. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature 533, 385–389 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Ohneiser, C. et al. Warm fjords and vegetated landscapes in early Pliocene East Antarctica. Earth Planet. Sci. Lett. 534, 116045 (2020).

    Article  CAS  Google Scholar 

  80. Passchier, S. Linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures based on a Pliocene high‐resolution record of ice‐rafted debris off Prydz Bay, East Antarctica. Paleoceanogr. 26, PA4204 (2011).

    Article  ADS  Google Scholar 

  81. Golledge, N. R. et al. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma. Clim. Past 13, 959–975 (2017).

    Article  Google Scholar 

  82. De Boer, B. et al. Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project. Cryosphere 9, 881–903 (2015).

    Article  ADS  Google Scholar 

  83. Dolan, A. M., de Boer, B., Bernales, J., Hill, D. J. & Haywood, A. M. High climate model dependency of Pliocene Antarctic ice-sheet predictions. Nat. Commun. 9, 2799 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  84. Yan, Q., Zhang, Z. & Wang, H. Investigating uncertainty in the simulation of the Antarctic ice sheet during the mid-Piacenzian. J. Geophys. Res. Atmos. 121, 1559–1574 (2016).

    Article  ADS  Google Scholar 

  85. Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015). Proposes new ice-sheet-model physics, including parameterizations of marine-ice-cliff instability, in an attempt to reproduce the marine-based retreat of the EAIS during the mid-Pliocene.

    Article  ADS  CAS  Google Scholar 

  86. Edwards, T. L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–63 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Jones, R. S. et al. Cosmogenic nuclides constrain surface fluctuations of an East Antarctic outlet glacier since the Pliocene. Earth Planet. Sci. Lett. 480, 75–86 (2017).

    Article  ADS  CAS  Google Scholar 

  88. Bradley, S. L., Siddall, M., Milne, G. A., Masson-Delmotte, V. & Wolff, E. Combining ice core records and ice sheet models to explore the evolution of the East Antarctic ice sheet during the Last Interglacial period. Glob. Planet. Change 100, 278–290 (2013).

    Article  ADS  Google Scholar 

  89. Sutter, J. et al. Limited retreat of the Wilkes Basin ice sheet during the Last Interglacial. Geophys. Res. Lett. 47, e2020GL088131 (2020).

    Article  ADS  Google Scholar 

  90. Mackintosh, A. N. et al. Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum. Quat. Sci. Rev. 100, 10–30 (2014). Synthesizes geological and chronological evidence to constrain the history of the EAIS from around 30,000 years ago to the present, highlighting marked regional asynchronicity and that most of the mass loss occurred between about 12,000 and 6,000 years ago.

    Article  ADS  Google Scholar 

  91. Livingstone, S. J. et al. Antarctic palaeo-ice streams. Earth Sci. Rev. 111, 90–128 (2012).

    Article  ADS  Google Scholar 

  92. Anderson, J. B. et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat. Sci. Rev. 100, 31–54 (2014).

    Article  ADS  Google Scholar 

  93. Hillenbrand, C.-D. et al. Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum. Quat. Sci. Rev. 100, 111–136 (2014).

    Article  ADS  Google Scholar 

  94. Arndt, J. E., Hillenbrand, C.-D., Grobe, H., Kuhn, G. & Wacker, L. Evidence for a dynamic grounding line in outer Filchner Trough, Antarctica, until the early Holocene. Geology 45, 1035–1038 (2020).

    Article  ADS  Google Scholar 

  95. Lin, Y. et al. A reconciled solution of Meltwater Pulse 1A sources using sea-level fingerprinting. Nat. Commun. 12, 2015 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Weber, M. et al. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature 510, 134–138 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Hall, B. L. et al. Accumulation and marine forcing of ice dynamics in the western Ross Sea during the last deglaciation. Nat. Geosci. 8, 625–628 (2015).

    Article  ADS  CAS  Google Scholar 

  98. King, C. et al. Delayed maximum and recession of an East Antarctic outlet glacier. Geology 48, 630–634 (2020).

    Article  ADS  CAS  Google Scholar 

  99. Jones, R. S. et al. Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability. Nat. Commun. 6, 8910 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  100. White, D. A., Fink, D. & Gore, D. B. Cosmogenic nuclide evidence for enhanced sensitivity of an East Antarctic ice stream to change during the last deglaciation. Geology 39, 23–26 (2011).

    Article  ADS  CAS  Google Scholar 

  101. Spector, P. et al. Rapid early‐Holocene deglaciation in the Ross Sea, Antarctica. Geophys. Res. Lett. 44, 7817–7825 (2017).

    Article  ADS  Google Scholar 

  102. Jones, R. S., Gudmundsson, G. H., Mackintosh, A. N., McCormack, F. S. & Whitmore, R. J. Ocean-driven and topography-controlled nonlinear glacier retreat during the Holocene: southwestern Ross Sea, Antarctica. Geophys. Res. Lett. 48, e2020GL091454 (2021).

    ADS  Google Scholar 

  103. McKay, R. et al. Antarctic marine ice-sheet retreat in the Ross Sea during the early Holocene. Geology 44, 7–10 (2016).

    Article  ADS  Google Scholar 

  104. Halberstadt, A. R. W., Simkins, L. M., Greenwood, S. L. & Anderson, J. B. Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica. Cryosphere 10, 1003–1020 (2016).

    Article  ADS  Google Scholar 

  105. Kingslake, J. et al. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. Nature 558, 430–434 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  106. Mackintosh, A. et al. Retreat of the East Antarctic ice sheet during the last glacial termination. Nat. Geosci. 4, 195–202 (2011).

    Article  ADS  CAS  Google Scholar 

  107. Whitehouse, P. L., Bentley, M. J., & Le Brocq, A. M. A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quat. Sci. Rev. 32, 1–24 (2012).

    Article  ADS  Google Scholar 

  108. Golledge, N. R. et al. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun. 5, 5107 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Lowry, D. P. et al. Deglacial grounding-line retreat in the Ross Embayment, Antarctica, controlled by ocean and atmosphere forcing. Sci. Adv. 5, eaav8754 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  110. Thompson, A. F., Stewart, A. L., Spence, P. & Heywood, K. J. The Antarctic Slope Current in a changing climate. Rev. Geophys. 56, 741–770 (2018).

    Article  ADS  Google Scholar 

  111. Morrison, A. K., Hogg, A. Mc. C., England, M. H. & Spence, P. Warm Circumpolar Deep Water transport towards Antarctica driven by local dense water export in canyons. Sci. Adv. 6, eaav2516 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hirano, D. et al. Strong ice-ocean interaction beneath Shirase Glacier Tongue in East Antarctica. Nat. Commun. 11, 4221 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jacobs, S. S. & Giulivi, C. F. Large multidecadal salinity trends near the Pacific–Antarctic continental margin. J. Clim. 23, 4508–4524 (2010).

    Article  ADS  Google Scholar 

  114. Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  115. Herraiz–Borreguero, R. et al. Circulation of modified Circumpolar Deep Water and basal melt beneath the Amery Ice Shelf, East Antarctica. J. Geophys. Res. Oceans. 120, 3098–3112 (2015).

    Article  ADS  Google Scholar 

  116. Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variation in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13, 616–620 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Alley, K. E., Scambos, T. A., Siegfried, M. R. & Fricker, H. A. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nat. Geosci. 9, 290–292 (2016).

    Article  ADS  CAS  Google Scholar 

  118. Dow, C. F. et al. Basal channels drive active surface hydrology and transverse ice shelf fracture. Sci. Adv. 4, eaa07212 (2018).

    Article  ADS  Google Scholar 

  119. Pelle, T., Morlighem, M. & McCormack, F. S. Aurora Basin, the weak underbelly of East Antarctica. Geophys. Res. Lett. 47, GL086821 (2020).

    Article  Google Scholar 

  120. Rignot, E. Changes in ice dynamics and mass balance of the Antarctic ice sheet. Philos. Trans. R. Soc. A 364, 1637–1655 (2006).

    Article  ADS  Google Scholar 

  121. Wingham, D. J., Shepherd, A., Muir, A. & Marshall, G. J. Mass balance of the Antarctic ice sheet. Philos. Trans. R. Soc. A 364, 1627–1635 (2006).

    Article  ADS  CAS  Google Scholar 

  122. Shepherd, A. & Wingham, D. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 316, 1529–1532 (2007).

    Article  ADS  CAS  Google Scholar 

  123. Greene, C. A., Blankenship, D. D., Gwyther, E. E., Silvano, A. & van Wijk, E. Wind causes Totten Ice Shelf melt and acceleration. Sci. Adv. 3, e1701681 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  124. Miles, B. W. J. et al. Recent acceleration of Denman Glacier (1972–2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration. Cryosphere 15, 663–676 (2021).

    Article  ADS  Google Scholar 

  125. Frezzotti, M., Cimbelli, A. & Ferrigno, J. G. Ice-front change and iceberg behaviour along Oates and George V Coasts, Antarctica, 1912-96. Ann. Glaciol. 27, 643–650 (1998).

    Article  ADS  Google Scholar 

  126. Wang, X., Holland, D. M., Cheng, X. & Gong, P. Grounding and calving cycle of Mertz Ice Tongue revealed by shallow Mertz Bank. Cryosphere 10, 2043–2056 (2016).

    Article  ADS  Google Scholar 

  127. Diez, A. et al. Basal settings control fast ice flow in the Recovery/Slessor/Bailey region, East Antarctica. Geophys. Res. Lett. 45, 2076–2715 (2018).

    Article  Google Scholar 

  128. Lovell, A. M., Stokes, C. R. & Jamieson, S. S. R. Sub-decadal variations in outlet glacier terminus positions in Victoria Land, Oates Land and George V Land, East Antarctica (1972–2013). Antarct. Sci. 29, 468–483 (2017).

    Article  ADS  Google Scholar 

  129. Nakamura, K., Yamanokuchi, T., Doi, K. & Shubuya, K. Net mass balance calculations for the Shirase Drainage Basin, East Antarctica, using the mass budget method. Polar Sci. 10, 111–122 (2016).

    Article  ADS  Google Scholar 

  130. Kittel, C. et al. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere 15, 1215–1236 (2021).

    Article  ADS  Google Scholar 

  131. Lenaerts, J. T. M., Medley, B., van den Broeke, M. R. & Wouters, B. Observing and modelling ice sheet surface mass balance. Rev. Geophys. 57, 376–420 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  132. Mottram, R. et al. What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. Cryosphere 15, 3751–3784 (2021).

    Article  ADS  Google Scholar 

  133. Medley, B. & Thomas, E. R. Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nat. Clim. Change 9, 34–39 (2019).

    Article  ADS  CAS  Google Scholar 

  134. Thomas, E. R. et al. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past. 13, 1491–1513 (2017).

    Article  Google Scholar 

  135. Kingslake, J., Ely, J. C., Das, I. & Bell, R. E. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature 544, 349–352 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  136. Stokes, C. R., Sanderson, J. E., Miles, B. W. L., Jamieson, S. S. R. & Leeson, A. A. Widespread distribution of supraglacial lakes around the margin of the East Antarctic Ice Sheet. Sci Rep. 9, 13823 (2019).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  137. Lenaerts, J. T. M. et al. Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nat. Clim. Change 7, 58–62 (2017).

    Article  ADS  Google Scholar 

  138. Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R. & Leeson, A. A. Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica. Cryosphere 14, 4103–4120 (2020).

    Article  ADS  Google Scholar 

  139. Warner, R. C. et al. Rapid formation of an ice doline on Amery Ice Shelf, East Antarctica. Geophys. Res. Lett. 48, e2020GL091095 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  140. Alley, K. E., Scambos, T. A., Miller, J. Z., Long, D. G. & MacFerrin, M. Quantifying vulnerability of Antarctic ice shelves to hydrofracture using microwave scattering properties. Remote Sens. Environ. 210, 297–306 (2018).

    Article  ADS  Google Scholar 

  141. Lai, C.-Y. et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature 584, 574–578 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  142. Kuipers Munneke, P., Ligtenberg, S. R., Van Den Broeke, M. R. & Vaughan, D. G. Firn air depletion as a precursor of Antarctic ice-shelf collapse. J. Glaciol. 60, 205–214 (2014).

    Article  ADS  Google Scholar 

  143. Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C. & Berne, A. Present and future of rainfall in Antarctica. Geophys. Res. Lett. 48, e2020GL092281 (2021).

    Article  ADS  Google Scholar 

  144. Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).

    Article  ADS  CAS  Google Scholar 

  145. Uotila, P., Lynch, A. H., Cassano, J. J. & Cullather, R. I. Changes in Antarctic net precipitation in the 21st century based on Intergovernmental Panel on Climate Change (IPCC) model scenarios. J. Geophys. Res. 112, D10107 (2007).

    ADS  Google Scholar 

  146. Bracegirdle, T. J., Connolley, W. M. & Turner, J. Antarctic climate change over the twenty first century. J. Geophys. Res. 113, D03103 (2008).

    ADS  Google Scholar 

  147. Ligtenberg, S. R. M., van de Berg, W. J., van den Broeke, M. R., Rae, J. G. L. & van Meijgaard, E. Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Clim. Dyn. 41, 867–884 (2013).

    Article  Google Scholar 

  148. Seroussi, H. et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere 14, 3033–3070 (2020). Presents an intercomparison of ice-flow simulations from 13 international groups and finds that East Antarctic mass change (2015–2100) varies from −6.1 cm to +8.3 cm in the simulations, with a marked increase in SMB outweighing the increased ice discharge under most RCP8.5 projections.

    Article  ADS  Google Scholar 

  149. Gilbert, E. & Kittel, C. Surface melt and runoff on Antarctic ice shelves at 1.5 °C, 2 °C, and 4 °C of future warming. Geophys. Res. Lett. 48, E2020GL091733 (2021).

    Article  ADS  Google Scholar 

  150. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  151. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in press).

  152. Edwards, T. L. et al. Projected land ice contributions to 21st century sea level rise. Nature 593, 74–82 (2021). Presents statistical emulation of ISMIP6 projections and finds East Antarctic sea-level contributions of −4 to +7 cm from 2015–2100 under SSP1-2.6 and SSP2-4.5 (5–95% range), increasing to −1 to +21 cm under a risk-averse subset of the most sensitive models and inputs.

    Article  ADS  CAS  PubMed  Google Scholar 

  153. Lowry, D. P., Krapp, M., Golledge, N. R. & Alevropoulos-Borrill, A. The influence of emissions scenarios on future Antarctic ice loss is unlikely to emerge this century. Commun. Earth Environ. 2, 221 (2021).

    Article  ADS  Google Scholar 

  154. Nowicki, S. et al. Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere 14, 2331–2368 (2020).

    Article  ADS  Google Scholar 

  155. Jourdain, N. C. et al. A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections. Cryosphere 14, 3111–3134 (2020).

    Article  ADS  Google Scholar 

  156. Levermann, A. et al. Projecting Antarctica’s contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth Syst. Dyn. 11, 35–76 (2020).

    Article  ADS  Google Scholar 

  157. Bassis, J. N., Berg, B., Crawford, A. J. & Benn, D. I. Transition to marine ice cliff Instability controlled by ice thickness gradients and velocity. Science 372, 1342–1344 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  158. Clerc, F., Minchew, B. M. & Behn, M. D. Marine ice cliff Instability mitigated by slow removal of ice shelves. Geophys. Res. Lett. 46, 12108–12116 (2019).

    Article  ADS  Google Scholar 

  159. Crawford, A. J. et al. Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization. Nat. Commun. 12, 2701 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. & Cooke, R. M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl Acad. Sci. USA. 116, 11195–11200 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hausfather, Z. & Forster, P. Analysis: do COP26 promises keep global warming below 2C? Carbon Brief https://www.carbonbrief.org/analysis-do-cop26-promises-keep-global-warming-below-2c (2021).

  162. Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  163. Sun, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol. 66, 891–904 (2020).

    Article  ADS  Google Scholar 

  164. Purich, A. & England, M. H. Historical and future projected warming of Antarctic Shelf Bottom Water in CMIP6 models. Geophys. Res. Lett. 48, e2021GL092752 (2021).

    Article  ADS  Google Scholar 

  165. Bracegirdle, T. J. et al. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos. 118, 547–562 (2013).

    Article  ADS  Google Scholar 

  166. Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).

    Article  ADS  Google Scholar 

  167. Naughten, K. A. et al. Future projections of Antarctic ice shelf melting based on CMIP5 scenarios. J. Clim. 31, 5243–5261 (2018).

    Article  ADS  Google Scholar 

  168. Lago, V. & England, M. H. Projected slowdown of Antarctic Bottom Water formation in response to amplified meltwater contributions. J. Clim. 32, 6319–6335 (2019).

    Article  ADS  Google Scholar 

  169. Jourdain, N. C. et al. Ocean circulation and sea-ice thinning induced by melting ice shelves in the Amundsen Sea. J. Geophys. Res. Oceans 122, 2550–2573 (2017).

    Article  ADS  Google Scholar 

  170. Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  171. England, M. H., Hutchinson, D. K., Santoso, A. & Sijp, W. P. Ice–atmosphere feedbacks dominate the response of the climate system to Drake Passage closure. J. Clim. 30, 5775–5790 (2017).

    Article  ADS  Google Scholar 

  172. Purich, A., Cai, W., England, M. H. & Cowan, T. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat. Commun. 7, 10409 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  173. Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).

    Article  ADS  CAS  Google Scholar 

  174. Sun, S. & Eisenman, I. Observed Antarctic sea ice expansion reproduced in a climate model after correcting biases in sea ice drift velocity. Nat. Commun. 12, 1060 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  175. Darelius, E., Fer, I. & Nicholls, K. W. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water. Nat. Commun. 7, 12300 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hellmer, H., Kauker, F., Timmermann, R., Determann, J. & Rae, J. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485, 225–228 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  177. Paxman, G. J. G. et al. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 535, 109346 (2019).

    Article  Google Scholar 

  178. Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM)–Part 2: parameter ensemble analysis. Cryosphere 14, 633–656 (2020).

    Article  ADS  Google Scholar 

  179. Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).

    Article  ADS  Google Scholar 

  180. Mouginot, J., Rignot, E. & Scheuchl, B. Continent-wide, interferometric SAR phase, mapping of Antarctic ice velocity. Geophys. Res. Lett. 46, 9710–9718 (2019).

    Article  ADS  Google Scholar 

  181. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  182. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    Article  ADS  CAS  Google Scholar 

  183. Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571-3605 (2020).

    Article  ADS  CAS  Google Scholar 

  184. Mazloff, M., Heimbach, P. & Wunsch, C. An eddy-permitting Southern Ocean State Estimate. J. Phys. Oceanogr. 40, 880–899 (2010).

    Article  ADS  Google Scholar 

  185. NOAA National Geophysical Data Center. 2-minute Gridded Global Relief Data (ETOPO2) v2. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5J1012Q (2006).

Download references

Acknowledgements

C.R.S., B.W.J.M. and S.S.R.J. acknowledge funding from the Natural Environment Research Council (NE/R000824/1). M.A.K., N.J.A. and M.H.E. are supported by the Australian Research Council Special Research Initiative, Australian Centre for Excellence in Antarctic Science (project number SR200100008) and R.S.J. is supported by the Special Research Initiative, Securing Antarctica’s Environmental Future (SR200100005). N.J.A. (FT160100029), M.H.E. (DP190100494, LP200100406) and R.S.J. (DE210101923) also acknowledge funding from the Australian Research Council. M.H.E. and M.A.K. also acknowledge support from the Centre for Southern Hemisphere Oceans Research (CSHOR), a joint research centre between QNLM, CSIRO, UNSW and UTAS. A.F. was supported by the Australian Antarctic Program Partnership through funding from the Australian Government as part of the Antarctic Science Collaboration Initiative. T.L.E. was supported by the UK Natural Environment Research Council (NE/T007443/1) and by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 869304, PROTECT contribution number 36. J.T.M.L. acknowledges support from the National Aeronautics and Space Administration (NASA), award no. 80NSSC20K1123. M.H.E. and A.F. thank S. Rintoul for discussions on ocean data coverage around East Antarctica. T.L.E. thanks G. Garner and R. Kopp for help with the IPCC (2021) datasets.

Author information

Authors and Affiliations

Authors

Contributions

C.R.S. developed the idea for the paper and all authors provided input on its initial contents and structure. C.R.S. drafted the first section. G.J.G.P. and S.S.R.J. drafted the second section, with contributions from M.J.B. and T.v.d.F. R.S.J. drafted the third section, with contributions from M.J.B. C.R.S. and B.W.J.M. drafted the fourth section, with contributions from M.H.E. and A.F. J.T.M.L. and B.M. drafted the fifth section, with input from M.A.K. C.R. and T.L.E. drafted the sixth section, with contributions from M.H.E. C.R.S. drafted the final section, with input from T.L.E. All authors provided comments and edits on all sections of the paper. G.J.G.P. produced Fig. 1, with input from C.R.S. P.L.W. produced Fig. 2, with input from C.R.S., M.A.K. and R.S.J. R.S.J. produced Fig. 3, with input from B.W.J.M. and C.R.S. A.F., M.H.E. and B.W.J.M. produced Fig. 4. J.T.M.L. and B.M. produced Fig. 5. T.L.E. carried out the analysis and produced Fig. 6, with input from C.R.

Corresponding author

Correspondence to Chris R. Stokes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Alex Gardner, Edward Gasson, Johann Klages and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and a pplicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stokes, C.R., Abram, N.J., Bentley, M.J. et al. Response of the East Antarctic Ice Sheet to past and future climate change. Nature 608, 275–286 (2022). https://doi.org/10.1038/s41586-022-04946-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04946-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing