Abstract
Topological gauge theories describe the low-energy properties of certain strongly correlated quantum systems through effective weakly interacting models1,2. A prime example is the Chern–Simons theory of fractional quantum Hall states, where anyonic excitations emerge from the coupling between weakly interacting matter particles and a density-dependent gauge field3. Although in traditional solid-state platforms such gauge theories are only convenient theoretical constructions, engineered quantum systems enable their direct implementation and provide a fertile playground to investigate their phenomenology without the need for strong interactions4. Here, we report the quantum simulation of a topological gauge theory by realizing a one-dimensional reduction of the Chern–Simons theory (the chiral BF theory5,6,7) in a Bose–Einstein condensate. Using the local conservation laws of the theory, we eliminate the gauge degrees of freedom in favour of chiral matter interactions8,9,10,11, which we engineer by synthesizing optically dressed atomic states with momentum-dependent scattering properties. This allows us to reveal the key properties of the chiral BF theory: the formation of chiral solitons and the emergence of an electric field generated by the system itself. Our results expand the scope of quantum simulation to topological gauge theories and open a route to the implementation of analogous gauge theories in higher dimensions12.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The datasets supporting this study are available from the corresponding authors upon request.
References
Fradkin, E. Field Theories of Condensed Matter Physics (Cambridge Univ. Press, 2013).
Wen, X.-G. Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, 2004).
Ezawa, Z. F. Quantum Hall Effects: Field Theoretical Approach and Related Topics (World Scientific, 2008).
Weeks, C., Rosenberg, G., Seradjeh, B. & Franz, M. Anyons in a weakly interacting system. Nat. Phys. 3, 796–801 (2007).
Rabello, S. J. A gauge theory of one-dimensional anyons. Phys. Lett. B 363, 180–183 (1995).
Benetton Rabello, S. J. 1D generalized statistics gas: a gauge theory approach. Phys. Rev. Lett. 76, 4007–4009 (1996).
Aglietti, U., Griguolo, L., Jackiw, R., Pi, S.-Y. & Seminara, D. Anyons and chiral solitons on a line. Phys. Rev. Lett. 77, 4406–4409 (1996).
Jackiw, R. A nonrelativistic chiral soliton in one dimension. J. Nonlinear Math. Phys. 4, 261–270 (1997).
Griguolo, L. & Seminara, D. Chiral solitons from dimensional reduction of Chern–Simons gauged non-linear Schrödinger equation: classical and quantum aspects. Nucl. Phys. B 516, 467–498 (1998).
Edmonds, M. J., Valiente, M., Juzeliūnas, G., Santos, L. & Öhberg, P. Simulating an interacting gauge theory with ultracold Bose gases. Phys. Rev. Lett. 110, 085301 (2013).
Chisholm, C. S. et al. Encoding a one-dimensional topological gauge theory in a Raman-coupled Bose–Einstein condensate. Preprint https://arxiv.org/abs/2204.05386 (2022).
Valentí-Rojas, G., Westerberg, N. & Öhberg, P. Synthetic flux attachment. Phys. Rev. Res. 2, 033453 (2020).
Wiese, U. J. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Ann. Phys. 525, 777–796 (2013).
Zohar, E., Cirac, J. I. & Reznik, B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79, 014401 (2016).
Dalmonte, M. & Montangero, S. Lattice gauge theory simulations in the quantum information era. Contemp. Phys. 57, 388–412 (2016).
Bañuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D 74, 165 (2020).
Klco, N., Roggero, A. & Savage, M. J. Standard model physics and the digital quantum revolution: thoughts about the interface. Rep. Prog. Phys. 85, 064301 (2022).
Fukushima, K. & Hatsuda, T. The phase diagram of dense QCD. Rep. Prog. Phys. 74, 014001 (2011).
Berges, J., Heller, M. P., Mazeliauskas, A. & Venugopalan, R. QCD thermalization: ab initio approaches and interdisciplinary connections. Rev. Mod. Phys. 93, 035003 (2021).
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534, 516–519 (2016).
Kokail, C. et al. Self-verifying variational quantum simulation of lattice models. Nature 569, 355–360 (2019).
Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).
Surace, F. M. et al. Lattice gauge theories and string dynamics in Rydberg atom quantum simulators. Phys. Rev. X 10, 021041 (2020).
Yang, B. et al. Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator. Nature 587, 392–396 (2020).
Zhou, Z.-Y. et al. Thermalization dynamics of a gauge theory on a quantum simulator. Science 377, 311–314 (2022).
Dai, H.-N. et al. Four-body ring-exchange interactions and anyonic statistics within a minimal toric-code Hamiltonian. Nat. Phys. 13, 1195–1200 (2017).
Klco, N. et al. Quantum-classical computation of Schwinger model dynamics using quantum computers. Phys. Rev. A 98, 032331 (2018).
Görg, F. et al. Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter. Nat. Phys. 15, 1161–1167 (2019).
Schweizer, C. et al. Floquet approach to \({{\mathbb{Z}}}_{2}\) lattice gauge theories with ultracold atoms in optical lattices. Nat. Phys. 15, 1168–1173 (2019).
Mil, A. et al. A scalable realization of local U(1) gauge invariance in cold atomic mixtures. Science 367, 1128–1130 (2020).
Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).
Lienhard, V. et al. Realization of a density-dependent peierls phase in a synthetic, spin–orbit coupled Rydberg system. Phys. Rev. X 10, 021031 (2020).
Clark, L. W. et al. Observation of density-dependent gauge fields in a Bose–Einstein condensate based on micromotion control in a shaken two-dimensional lattice. Phys. Rev. Lett. 121, 030402 (2018).
Yao, K.-X., Zhang, Z. & Chin, C. Domain-wall dynamics in Bose–Einstein condensates with synthetic gauge fields. Nature 602, 68–72 (2022).
Kundu, A. Exact solution of double δ function Bose gas through an interacting anyon gas. Phys. Rev. Lett. 83, 1275–1278 (1999).
Muschik, C. et al. U(1) Wilson lattice gauge theories in digital quantum simulators. New J. Phys. 19, 103020 (2017).
Sanz, J., Frölian, A., Chisholm, C. S., Cabrera, C. R. & Tarruell, L. Interaction control and bright solitons in coherently coupled Bose–Einstein condensates. Phys. Rev. Lett. 128, 013201 (2022).
Williams, R. A. et al. Synthetic partial waves in ultracold atomic collisions. Science 335, 314–317 (2012).
Goldman, N., Juzeliūnas, G., Öhberg, P. & Spielman, I. B. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).
Spielman, I. B. Raman processes and effective gauge potentials. Phys. Rev. A 79, 063613 (2009).
Strecker, K. E., Partridge, G. B., Truscott, A. G. & Hulet, R. G. Formation and propagation of matter-wave soliton trains. Nature 417, 150–153 (2002).
Khaykovich, L. et al. Formation of a matter-wave bright soliton. Science 296, 1290–1293 (2002).
Marchant, A. L. et al. Controlled formation and reflection of a bright solitary matter-wave. Nat. Commun. 4, 1865 (2013).
Khamehchi, M. A. et al. Negative-mass hydrodynamics in a spin–orbit–coupled Bose–Einstein condensate. Phys. Rev. Lett. 118, 155301 (2017).
Keilmann, T., Lanzmich, S., McCulloch, I. & Roncaglia, M. Statistically induced phase transitions and anyons in 1D optical lattices. Nat. Commun. 2, 361 (2011).
Greschner, S. & Santos, L. Anyon Hubbard model in one-dimensional optical lattices. Phys. Rev. Lett. 115, 053002 (2015).
Sträter, C., Srivastava, S. C. L. & Eckardt, A. Floquet realization and signatures of one-dimensional anyons in an optical lattice. Phys. Rev. Lett. 117, 205303 (2016).
Bonkhoff, M. et al. Bosonic continuum theory of one-dimensional lattice anyons. Phys. Rev. Lett. 126, 163201 (2021).
Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).
Floreanini, R. & Jackiw, R. Self-dual fields as charge-density solitons. Phys. Rev. Lett. 59, 1873–1876 (1987).
Faddeev, L. & Jackiw, R. Hamiltonian reduction of unconstrained and constrained systems. Phys. Rev. Lett. 60, 1692–1694 (1988).
Jackiw, R. in Diverse Topics in Theoretical and Mathematical Physics 367—381 (World Scientific, 1995).
Dennis, G. R., Hope, J. J. & Johnsson, M. T. XMDS2: fast, scalable simulation of coupled stochastic partial differential equations. Comput. Phys. Commun. 184, 201–208 (2013).
Roy, S. et al. Test of the universality of the three-body Efimov parameter at narrow Feshbach resonances. Phys. Rev. Lett. 111, 053202 (2013).
Wei, R. & Mueller, E. J. Magnetic-field dependence of Raman coupling in alkali-metal atoms. Phys. Rev. A 87, 042514 (2013).
Cheuk, L. W. et al. Spin-injection spectroscopy of a spin–orbit coupled Fermi gas. Phys. Rev. Lett. 109, 095302 (2012).
Wang, P. et al. Spin–orbit coupled degenerate Fermi gases. Phys. Rev. Lett. 109, 095301 (2012).
Carr, L. D. & Castin, Y. Dynamics of a matter-wave bright soliton in an expulsive potential. Phys. Rev. A 66, 063602 (2002).
Cabrera, C. R. et al. Quantum liquid droplets in a mixture of Bose–Einstein condensates. Science 359, 301–304 (2018).
Acknowledgements
We thank M. Ballu and J. Sanz for preparatory work on the Raman laser system; and M. Dalmonte, G. Juzeliūnas, P. Öhberg, L. Santos, G. Valentí-Rojas, and the ICFO Quantum Gases Experiment and Quantum Optics Theory groups for discussions. We acknowledge funding from the European Research Council under the European Union’s Framework Programme for Research and Innovation Horizon 2020 (H2020-ERC-CoG SuperComp, grant agreement No. 101003295), the Government of Spain (LIGAS projects PID2020-112687GB-C21 [MCIN/AEI/10.13039/501100011033] at ICFO and PID2020-112687GB-C22 [MCIN/AEI/10.13039/501100011033] at UAB, and Severo Ochoa CEX2019-000910-S [MCIN/AEI/10.13039/501100011033] at ICFO), Deutsche Forschungsgemeinschaft (Research Unit FOR2414, Project No. 277974659), Fundación Ramón Areces (project CODEC), Fundació Cellex, Fundació Mir-Puig, and Generalitat de Catalunya (ERDF Operational Program of Catalunya, Project QUASICAT/QuantumCat Ref. No. 001-P-001644, AGAUR and CERCA program). A.F. acknowledges support from La Caixa Foundation (ID 100010434, PhD fellowship LCF/BQ/DI18/11660040) and the European Union (H2020-Marie Skłodowska-Curie grant agreement No. 713673), C.S.C. from the European Union (H2020-Marie Skłodowska-Curie grant agreement No. 713729), E.N. from the European Union (H2020-Marie Skłodowska-Curie grant agreement No. 101029996 ToPIKS), C.R.C. from an ICFO-MPQ Cellex postdoctoral fellowship, R.R. from the European Union (H2020-Marie Skłodowska-Curie grant agreement No. 101030630 UltraComp), A.C. from the UAB Talent Research programme, and L.T. from the Government of Spain and ESF "Investing in your future" (RYC-2015-17890 [MCIN/AEI/10.13039/501100011033]).
Author information
Authors and Affiliations
Contributions
A.F., C.S.C., E.N. and R.R. took and analysed the data. A.F., C.S.C., E.N., C.R.C. and R.R. prepared the experiment. A.C. and L.T. developed the theory. C.S.C. performed the numerical simulations. L.T. supervised the work. All authors contributed extensively to the interpretation of the results and to the preparation of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks Fabian Grusdt and Maren Mossman for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Calibration of mechanical momentum by spin ejection spectroscopy.
a, Dispersion relation of the dressed states \(| \,-\,\rangle \) and \(| \,+\,\rangle \), and of the bare states \(\left|\uparrow \right\rangle ,\left|\downarrow \right\rangle \), and \(\left|{\rm{aux}}\right\rangle \) in the rotating frame. Due to the Raman coupling, states \(\left|\uparrow \right\rangle \) and \(\left|\downarrow \right\rangle \) are shifted by 2kR in momentum and δ0 in frequency. We exploit the \(| \,-\,\rangle \) to \(\left|{\rm{aux}}\right\rangle \) transition, of frequency f0 + Δf, to extract the mechanical momentum kmech of the cloud. b, Radio-frequency spectroscopy of the \(| \,-\,\rangle \) to \(\left|{\rm{aux}}\right\rangle \) transition for various values of the two-photon Raman detuning δ0 with ħΩ/ER = 4.5(3), corresponding to the parameters of the expansion experiments of Fig. 4b. c, Value of the generalized detuning \(\hbar \widetilde{\delta }/{E}_{R}=\hbar {\delta }_{0}/{E}_{R}-4{k}_{x}/{k}_{R}\) vs. δ0 (circles) extracted from the measured frequency difference \(\Delta f=(\widetilde{\Omega }-\widetilde{\delta })/2\). Solid line: theory prediction for kmech/kR = 0. Shaded area: uncertainty in the theoretical value caused by the uncertainties in δ0 and Ω. We conclude that the preparation procedure for the experiments of Fig. 4 imparts negligible mechanical momentum to the cloud.
Supplementary information
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Frölian, A., Chisholm, C.S., Neri, E. et al. Realizing a 1D topological gauge theory in an optically dressed BEC. Nature 608, 293–297 (2022). https://doi.org/10.1038/s41586-022-04943-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-022-04943-3
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.