Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Realizing a 1D topological gauge theory in an optically dressed BEC


Topological gauge theories describe the low-energy properties of certain strongly correlated quantum systems through effective weakly interacting models1,2. A prime example is the Chern–Simons theory of fractional quantum Hall states, where anyonic excitations emerge from the coupling between weakly interacting matter particles and a density-dependent gauge field3. Although in traditional solid-state platforms such gauge theories are only convenient theoretical constructions, engineered quantum systems enable their direct implementation and provide a fertile playground to investigate their phenomenology without the need for strong interactions4. Here, we report the quantum simulation of a topological gauge theory by realizing a one-dimensional reduction of the Chern–Simons theory (the chiral BF theory5,6,7) in a Bose–Einstein condensate. Using the local conservation laws of the theory, we eliminate the gauge degrees of freedom in favour of chiral matter interactions8,9,10,11, which we engineer by synthesizing optically dressed atomic states with momentum-dependent scattering properties. This allows us to reveal the key properties of the chiral BF theory: the formation of chiral solitons and the emergence of an electric field generated by the system itself. Our results expand the scope of quantum simulation to topological gauge theories and open a route to the implementation of analogous gauge theories in higher dimensions12.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulation of the chiral BF theory in an optically dressed BEC.
Fig. 2: Observation of chiral interactions.
Fig. 3: Chiral bright solitons.
Fig. 4: Revealing the chiral BF electric field.

Data availability

The datasets supporting this study are available from the corresponding authors upon request.


  1. Fradkin, E. Field Theories of Condensed Matter Physics (Cambridge Univ. Press, 2013).

  2. Wen, X.-G. Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, 2004).

  3. Ezawa, Z. F. Quantum Hall Effects: Field Theoretical Approach and Related Topics (World Scientific, 2008).

  4. Weeks, C., Rosenberg, G., Seradjeh, B. & Franz, M. Anyons in a weakly interacting system. Nat. Phys. 3, 796–801 (2007).

    Article  CAS  Google Scholar 

  5. Rabello, S. J. A gauge theory of one-dimensional anyons. Phys. Lett. B 363, 180–183 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Benetton Rabello, S. J. 1D generalized statistics gas: a gauge theory approach. Phys. Rev. Lett. 76, 4007–4009 (1996).

    Article  ADS  PubMed  Google Scholar 

  7. Aglietti, U., Griguolo, L., Jackiw, R., Pi, S.-Y. & Seminara, D. Anyons and chiral solitons on a line. Phys. Rev. Lett. 77, 4406–4409 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Jackiw, R. A nonrelativistic chiral soliton in one dimension. J. Nonlinear Math. Phys. 4, 261–270 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Griguolo, L. & Seminara, D. Chiral solitons from dimensional reduction of Chern–Simons gauged non-linear Schrödinger equation: classical and quantum aspects. Nucl. Phys. B 516, 467–498 (1998).

    Article  ADS  MATH  Google Scholar 

  10. Edmonds, M. J., Valiente, M., Juzeliūnas, G., Santos, L. & Öhberg, P. Simulating an interacting gauge theory with ultracold Bose gases. Phys. Rev. Lett. 110, 085301 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Chisholm, C. S. et al. Encoding a one-dimensional topological gauge theory in a Raman-coupled Bose–Einstein condensate. Preprint (2022).

  12. Valentí-Rojas, G., Westerberg, N. & Öhberg, P. Synthetic flux attachment. Phys. Rev. Res. 2, 033453 (2020).

    Article  Google Scholar 

  13. Wiese, U. J. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Ann. Phys. 525, 777–796 (2013).

    Article  MathSciNet  CAS  MATH  Google Scholar 

  14. Zohar, E., Cirac, J. I. & Reznik, B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79, 014401 (2016).

    Article  ADS  MathSciNet  PubMed  CAS  Google Scholar 

  15. Dalmonte, M. & Montangero, S. Lattice gauge theory simulations in the quantum information era. Contemp. Phys. 57, 388–412 (2016).

    Article  ADS  Google Scholar 

  16. Bañuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D 74, 165 (2020).

    Article  ADS  CAS  Google Scholar 

  17. Klco, N., Roggero, A. & Savage, M. J. Standard model physics and the digital quantum revolution: thoughts about the interface. Rep. Prog. Phys. 85, 064301 (2022).

  18. Fukushima, K. & Hatsuda, T. The phase diagram of dense QCD. Rep. Prog. Phys. 74, 014001 (2011).

    Article  ADS  CAS  Google Scholar 

  19. Berges, J., Heller, M. P., Mazeliauskas, A. & Venugopalan, R. QCD thermalization: ab initio approaches and interdisciplinary connections. Rev. Mod. Phys. 93, 035003 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  20. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  21. Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534, 516–519 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Kokail, C. et al. Self-verifying variational quantum simulation of lattice models. Nature 569, 355–360 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Surace, F. M. et al. Lattice gauge theories and string dynamics in Rydberg atom quantum simulators. Phys. Rev. X 10, 021041 (2020).

    CAS  Google Scholar 

  25. Yang, B. et al. Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator. Nature 587, 392–396 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Zhou, Z.-Y. et al. Thermalization dynamics of a gauge theory on a quantum simulator. Science 377, 311–314 (2022).

  27. Dai, H.-N. et al. Four-body ring-exchange interactions and anyonic statistics within a minimal toric-code Hamiltonian. Nat. Phys. 13, 1195–1200 (2017).

    Article  CAS  Google Scholar 

  28. Klco, N. et al. Quantum-classical computation of Schwinger model dynamics using quantum computers. Phys. Rev. A 98, 032331 (2018).

    Article  ADS  CAS  Google Scholar 

  29. Görg, F. et al. Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter. Nat. Phys. 15, 1161–1167 (2019).

    Article  CAS  Google Scholar 

  30. Schweizer, C. et al. Floquet approach to \({{\mathbb{Z}}}_{2}\) lattice gauge theories with ultracold atoms in optical lattices. Nat. Phys. 15, 1168–1173 (2019).

    Article  CAS  Google Scholar 

  31. Mil, A. et al. A scalable realization of local U(1) gauge invariance in cold atomic mixtures. Science 367, 1128–1130 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  32. Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).

    Article  CAS  Google Scholar 

  33. Lienhard, V. et al. Realization of a density-dependent peierls phase in a synthetic, spin–orbit coupled Rydberg system. Phys. Rev. X 10, 021031 (2020).

    CAS  Google Scholar 

  34. Clark, L. W. et al. Observation of density-dependent gauge fields in a Bose–Einstein condensate based on micromotion control in a shaken two-dimensional lattice. Phys. Rev. Lett. 121, 030402 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Yao, K.-X., Zhang, Z. & Chin, C. Domain-wall dynamics in Bose–Einstein condensates with synthetic gauge fields. Nature 602, 68–72 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Kundu, A. Exact solution of double δ function Bose gas through an interacting anyon gas. Phys. Rev. Lett. 83, 1275–1278 (1999).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  37. Muschik, C. et al. U(1) Wilson lattice gauge theories in digital quantum simulators. New J. Phys. 19, 103020 (2017).

    Article  ADS  CAS  Google Scholar 

  38. Sanz, J., Frölian, A., Chisholm, C. S., Cabrera, C. R. & Tarruell, L. Interaction control and bright solitons in coherently coupled Bose–Einstein condensates. Phys. Rev. Lett. 128, 013201 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Williams, R. A. et al. Synthetic partial waves in ultracold atomic collisions. Science 335, 314–317 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Goldman, N., Juzeliūnas, G., Öhberg, P. & Spielman, I. B. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Spielman, I. B. Raman processes and effective gauge potentials. Phys. Rev. A 79, 063613 (2009).

    Article  ADS  CAS  Google Scholar 

  42. Strecker, K. E., Partridge, G. B., Truscott, A. G. & Hulet, R. G. Formation and propagation of matter-wave soliton trains. Nature 417, 150–153 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Khaykovich, L. et al. Formation of a matter-wave bright soliton. Science 296, 1290–1293 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Marchant, A. L. et al. Controlled formation and reflection of a bright solitary matter-wave. Nat. Commun. 4, 1865 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Khamehchi, M. A. et al. Negative-mass hydrodynamics in a spin–orbit–coupled Bose–Einstein condensate. Phys. Rev. Lett. 118, 155301 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Keilmann, T., Lanzmich, S., McCulloch, I. & Roncaglia, M. Statistically induced phase transitions and anyons in 1D optical lattices. Nat. Commun. 2, 361 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  47. Greschner, S. & Santos, L. Anyon Hubbard model in one-dimensional optical lattices. Phys. Rev. Lett. 115, 053002 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  48. Sträter, C., Srivastava, S. C. L. & Eckardt, A. Floquet realization and signatures of one-dimensional anyons in an optical lattice. Phys. Rev. Lett. 117, 205303 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  49. Bonkhoff, M. et al. Bosonic continuum theory of one-dimensional lattice anyons. Phys. Rev. Lett. 126, 163201 (2021).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  50. Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  51. Floreanini, R. & Jackiw, R. Self-dual fields as charge-density solitons. Phys. Rev. Lett. 59, 1873–1876 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Faddeev, L. & Jackiw, R. Hamiltonian reduction of unconstrained and constrained systems. Phys. Rev. Lett. 60, 1692–1694 (1988).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  53. Jackiw, R. in Diverse Topics in Theoretical and Mathematical Physics 367—381 (World Scientific, 1995).

  54. Dennis, G. R., Hope, J. J. & Johnsson, M. T. XMDS2: fast, scalable simulation of coupled stochastic partial differential equations. Comput. Phys. Commun. 184, 201–208 (2013).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  55. Roy, S. et al. Test of the universality of the three-body Efimov parameter at narrow Feshbach resonances. Phys. Rev. Lett. 111, 053202 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  56. Wei, R. & Mueller, E. J. Magnetic-field dependence of Raman coupling in alkali-metal atoms. Phys. Rev. A 87, 042514 (2013).

    Article  ADS  CAS  Google Scholar 

  57. Cheuk, L. W. et al. Spin-injection spectroscopy of a spin–orbit coupled Fermi gas. Phys. Rev. Lett. 109, 095302 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  58. Wang, P. et al. Spin–orbit coupled degenerate Fermi gases. Phys. Rev. Lett. 109, 095301 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  59. Carr, L. D. & Castin, Y. Dynamics of a matter-wave bright soliton in an expulsive potential. Phys. Rev. A 66, 063602 (2002).

    Article  ADS  CAS  Google Scholar 

  60. Cabrera, C. R. et al. Quantum liquid droplets in a mixture of Bose–Einstein condensates. Science 359, 301–304 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

Download references


We thank M. Ballu and J. Sanz for preparatory work on the Raman laser system; and M. Dalmonte, G. Juzeliūnas, P. Öhberg, L. Santos, G. Valentí-Rojas, and the ICFO Quantum Gases Experiment and Quantum Optics Theory groups for discussions. We acknowledge funding from the European Research Council under the European Union’s Framework Programme for Research and Innovation Horizon 2020 (H2020-ERC-CoG SuperComp, grant agreement No. 101003295),  the Government of Spain (LIGAS projects PID2020-112687GB-C21 [MCIN/AEI/10.13039/501100011033] at ICFO and PID2020-112687GB-C22 [MCIN/AEI/10.13039/501100011033] at UAB, and Severo Ochoa CEX2019-000910-S [MCIN/AEI/10.13039/501100011033] at ICFO), Deutsche Forschungsgemeinschaft (Research Unit FOR2414, Project No. 277974659), Fundación Ramón Areces (project CODEC), Fundació Cellex, Fundació Mir-Puig, and Generalitat de Catalunya (ERDF Operational Program of Catalunya, Project QUASICAT/QuantumCat Ref. No. 001-P-001644, AGAUR and CERCA program). A.F. acknowledges support from La Caixa Foundation (ID 100010434, PhD fellowship LCF/BQ/DI18/11660040) and the European Union (H2020-Marie Skłodowska-Curie grant agreement No. 713673), C.S.C. from the European Union (H2020-Marie Skłodowska-Curie grant agreement No. 713729), E.N. from the European Union (H2020-Marie Skłodowska-Curie grant agreement No. 101029996 ToPIKS), C.R.C. from an ICFO-MPQ Cellex postdoctoral fellowship, R.R. from the European Union (H2020-Marie Skłodowska-Curie grant agreement No. 101030630 UltraComp), A.C. from the UAB Talent Research programme, and L.T. from the Government of Spain  and ESF "Investing in your future" (RYC-2015-17890 [MCIN/AEI/10.13039/501100011033]).

Author information

Authors and Affiliations



A.F., C.S.C., E.N. and R.R. took and analysed the data. A.F., C.S.C., E.N., C.R.C. and R.R. prepared the experiment. A.C. and L.T. developed the theory. C.S.C. performed the numerical simulations. L.T. supervised the work. All authors contributed extensively to the interpretation of the results and to the preparation of the manuscript.

Corresponding authors

Correspondence to Alessio Celi or Leticia Tarruell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Fabian Grusdt and Maren Mossman for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Calibration of mechanical momentum by spin ejection spectroscopy.

a, Dispersion relation of the dressed states \(| \,-\,\rangle \) and \(| \,+\,\rangle \), and of the bare states \(\left|\uparrow \right\rangle ,\left|\downarrow \right\rangle \), and \(\left|{\rm{aux}}\right\rangle \) in the rotating frame. Due to the Raman coupling, states \(\left|\uparrow \right\rangle \) and \(\left|\downarrow \right\rangle \) are shifted by 2kR in momentum and δ0 in frequency. We exploit the \(| \,-\,\rangle \) to \(\left|{\rm{aux}}\right\rangle \) transition, of frequency f0 + Δf, to extract the mechanical momentum kmech of the cloud. b, Radio-frequency spectroscopy of the \(| \,-\,\rangle \) to \(\left|{\rm{aux}}\right\rangle \) transition for various values of the two-photon Raman detuning δ0 with ħΩ/ER = 4.5(3), corresponding to the parameters of the expansion experiments of Fig. 4b. c, Value of the generalized detuning \(\hbar \widetilde{\delta }/{E}_{R}=\hbar {\delta }_{0}/{E}_{R}-4{k}_{x}/{k}_{R}\) vs. δ0 (circles) extracted from the measured frequency difference \(\Delta f=(\widetilde{\Omega }-\widetilde{\delta })/2\). Solid line: theory prediction for kmech/kR = 0. Shaded area: uncertainty in the theoretical value caused by the uncertainties in δ0 and Ω. We conclude that the preparation procedure for the experiments of Fig. 4 imparts negligible mechanical momentum to the cloud.

Source data

Extended Data Table 1 Experimental parameters
Extended Data Table 2 Raman dressing parameters

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frölian, A., Chisholm, C.S., Neri, E. et al. Realizing a 1D topological gauge theory in an optically dressed BEC. Nature 608, 293–297 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing