Abstract
The development of quantum computing across several technologies and platforms has reached the point of having an advantage over classical computers for an artificial problem, a point known as ‘quantum advantage’. As a next step along the development of this technology, it is now important to discuss ‘practical quantum advantage’, the point at which quantum devices will solve problems of practical interest that are not tractable for traditional supercomputers. Many of the most promising short-term applications of quantum computers fall under the umbrella of quantum simulation: modelling the quantum properties of microscopic particles that are directly relevant to modern materials science, high-energy physics and quantum chemistry. This would impact several important real-world applications, such as developing materials for batteries, industrial catalysis or nitrogen fixing. Much as aerodynamics can be studied either through simulations on a digital computer or in a wind tunnel, quantum simulation can be performed not only on future fault-tolerant digital quantum computers but also already today through special-purpose analogue quantum simulators. Here we overview the state of the art and future perspectives for quantum simulation, arguing that a first practical quantum advantage already exists in the case of specialized applications of analogue devices, and that fully digital devices open a full range of applications but require further development of fault-tolerant hardware. Hybrid digital–analogue devices that exist today already promise substantial flexibility in near-term applications.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Quantum computing and machine learning for Arabic language sentiment classification in social media
Scientific Reports Open Access 12 October 2023
-
Evidence of Kardar-Parisi-Zhang scaling on a digital quantum simulator
npj Quantum Information Open Access 20 July 2023
-
Practical advantage of quantum machine learning in ghost imaging
Communications Physics Open Access 10 July 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).
Grumbling, E. & Horowitz, M. (eds) Quantum Computing: Progress and Prospects (National Academies Press, 2019).
Deutsch, I. H. Harnessing the power of the second quantum revolution. PRX Quantum 1, 020101 (2020).
Nielsen, M. & Chuang, I. Quantum Computation and Quantum Information 10th anniversary edn (Cambridge Univ. Press, 2010).
Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).
Montanaro, A. Quantum algorithms: an overview. npj Quantum Inf. 2, 15023 (2016).
Aramon, M. et al. Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front. Phys. 7, 48 (2019).
Gibney, E. Hello quantum world! Google publishes landmark quantum supremacy claim. Nature 574, 461–462 (2019).
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). This article reports the demonstration of a quantum advantage with verification for a mathematical problem designed to test the quantum hardware.
Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).
Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012).
Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).
Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).
Quintanilla, J. & Hooley, C. The strong-correlations puzzle. Phys. World 22, 32–37 (2009).
Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl Acad. Sci. USA 115, 9456–9461 (2018).
Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996). This article discusses in detail how digital quantum simulation could be implemented on quantum computers, and forms the basis for the fault-tolerant quantum simulation protocols discussed here.
Roffe, J. Quantum error correction: an introductory guide. Contemp. Phys. 60, 226–245 (2019).
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009).
Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).
Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002). This article demonstrates the first analogue quantum simulation of a strongly correlated quantum system, making use of cold atoms in optical lattices.
Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).
Hartmann, M. J. Quantum simulation with interacting photons. J. Opt. 18, 104005 (2016).
Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).
Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).
Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).
White, A. G. Photonic quantum simulation. In 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology 660–661 (Optica Publishing Group, 2014).
Choi, J.-y et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016). This paper provides an important recent demonstration of the use of analogue quantum simulators with cold atoms in optical lattices to explore the dynamics of interacting particles in a disordered system, which is intractable to classical computation.
Chiu, C. S. et al. String patterns in the doped Hubbard model. Science 365, 251–256 (2019).
Koepsell, J. et al. Imaging magnetic polarons in the doped Fermi–Hubbard model. Nature 572, 358–362 (2019).
Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242–1247 (2021).
Satzinger, K. J. et al. Realizing topologically ordered states on a quantum processor. Science374, 1237–1241 (2021).
Bluvstein, D. et al. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science 371, 1355–1359 (2021). This article demonstrates the state of the art for observing many-body dynamics in an analogue quantum simulator with neutral atom arrays and Rydberg excitations.
Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021). This article demonstrates analogue quantum simulation of dynamics with 196 spins using neutral atoms in tweezer arrays.
Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).
Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).
Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).
Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021).
LeBlanc, J. P. F. et al. Solutions of the two-dimensional Hubbard model: benchmarks and results from a wide range of numerical algorithms. Phys. Rev. X 5, 041041 (2015).
Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).
Bauer, B. et al. The ALPS project release 2.0: open source software for strongly correlated systems. J. Stat. Mech. 2011, P05001 (2011).
Becca, F. & Sorella, S. Quantum Monte Carlo Approaches for Correlated Systems (Cambridge Univ. Press, 2017).
Werner, P., Oka, T. & Millis, A. J. Diagrammatic Monte Carlo simulation of nonequilibrium systems. Phys. Rev. B 79, 035320 (2009).
Troyer, M. & Wiese, U.-J. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005).
Eisert, J. Entangling power and quantum circuit complexity. Phys. Rev. Lett.127, 020501 (2021).
Swingle, B., Bentsen, G., Schleier-Smith, M. & Hayden, P. Measuring the scrambling of quantum information. Phys. Rev. A 94, 040302 (2016).
Hatano, N. & Suzuki, M. in Quantum Annealing and Other Optimization Methods (eds Das, A. & Chakrabarti, B. K.) 37–68 (Lecture Notes in Physics, Springer, 2005).
Childs, A. M., Su, Y., Tran, M. C., Wiebe, N. & Zhu, S. Theory of Trotter error with commutator scaling. Phys. Rev. X 11, 011020 (2021).
Heyl, M., Hauke, P. & Zoller, P. Quantum localization bounds trotter errors in digital quantum simulation. Sci. Adv. 5, eaau8342 (2019).
Wecker, D., Bauer, B., Clark, B. K., Hastings, M. B. & Troyer, M. Gate-count estimates for performing quantum chemistry on small quantum computers. Phys. Rev. A 90, 022305 (2014).
Wecker, D. et al. Solving strongly correlated electron models on a quantum computer. Phys. Rev. A 92, 062318 (2015).
Kliesch, M., Gogolin, C. & Eisert, J. Lieb–Robinson Bounds and the Simulation of Time-Evolution of Local Observables in Lattice Systems 301–318 (Springer, 2014).
Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).
Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143–224 (2008).
Vidal, G. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004). This article introduced classical simulation of one-dimensional many-body systems using matrix product states, which provide the present state of the art in classical simulation of quench dynamics in strongly interacting systems.
Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008).
Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018).
Kempe, J., Kitaev, A. & Regev, O. The complexity of the local Hamiltonian problem. SIAM J. Comput. 35, 1070–1097 (2006).
Poggi, P. M., Lysne, N. K., Kuper, K. W., Deutsch, I. H. & Jessen, P. S. Quantifying the sensitivity to errors in analog quantum simulation. PRX Quantum 1, 020308 (2020).
Lanyon, B. P. et al. Universal digital quantum simulation with trapped ions. Science 334, 57–61 (2011).
Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534, 516–519 (2016).
Berry, D. W., Childs, A. M., Cleve, R., Kothari, R. & Somma, R. D. Simulating Hamiltonian dynamics with a truncated taylor series. Phys. Rev. Lett. 114, 090502 (2015).
Haah, J., Hastings, M. B., Kothari, R. & Low, G. H. Quantum algorithm for simulating real time evolution of lattice Hamiltonians. SIAM J. Comput. FOCS18-250-FOCS18-284 (2021).
Aharonov, D. & Ta-Shma, A. Adiabatic quantum state generation and statistical zero knowledge. In Proc. Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03 20–29 (Association for Computing Machinery, 2003).
Low, G. H. & Chuang, I. L. Hamiltonian simulation by qubitization. Quantum 3, 163 (2019).
Flannigan, S. et al. Propagation of errors and quantitative quantum simulation with quantum advantage. Preprint at https://arxiv.org/abs/2204.13644 (2022).
Morgado, M. & Whitlock, S. Quantum simulation and computing with rydberg-interacting qubits. AVS Quantum Sci. 3, 023501 (2021).
Poulin, D. et al. The Trotter step size required for accurate quantum simulation of quantum chemistry. Quantum Inf. Comput. 15, 361–384 (2015).
Sornborger, A. T. & Stewart, E. D. Higher-order methods for simulations on quantum computers. Phys. Rev. A 60, 1956–1965 (1999).
Hastings, M. B., Wecker, D., Bauer, B. & Troyer, M. Improving quantum algorithms for quantum chemistry. Quantum Inf. Comput. 15, 1–21 (2015).
Bocharov, A., Roetteler, M. & Svore, K. M. Efficient synthesis of universal repeat-until-success quantum circuits. Phys. Rev. Lett. 114, 080502 (2015).
Gidney, C. Halving the cost of quantum addition. Quantum 2, 74 (2018).
Carrasco, J., Elben, A., Kokail, C., Kraus, B. & Zoller, P. Theoretical and experimental perspectives of quantum verification. PRX Quantum 2, 010102 (2021).
Eisert, J. et al. Quantum certification and benchmarking. Nat. Rev. Phys. 2, 382–390 (2020).
Elben, A. et al. Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett. 124, 010504 (2020).
Bairey, E., Arad, I. & Lindner, N. H. Learning a local Hamiltonian from local measurements. Phys. Rev. Lett. 122, 020504 (2019).
Evans, T. J., Harper, R. & Flammia, S. T. Scalable Bayesian Hamiltonian learning. Preprint at https://arxiv.org/abs/1912.07636 (2019).
Li, Z., Zou, L. & Hsieh, T. H. Hamiltonian tomography via quantum quench. Phys. Rev. Lett. 124, 160502 (2020).
Valenti, A., van Nieuwenburg, E., Huber, S. & Greplova, E. Hamiltonian learning for quantum error correction. Phys. Rev. Res. 1, 033092 (2019).
Wang, J. et al. Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551–555 (2017).
Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).
Bañuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D 74, 165 (2020).
Bentsen, G. et al. Treelike interactions and fast scrambling with cold atoms. Phys. Rev. Lett. 123, 130601 (2019).
Periwal, A. et al. Programmable interactions and emergent geometry in an atomic array. Nature 600, 630–635 (2021).
Argüello-Luengo, J., González-Tudela, A., Shi, T., Zoller, P. & Cirac, J. I. Analogue quantum chemistry simulation. Nature 574, 215–218 (2019).
Cubitt, T., Montanaro, A. & Piddock, S. Universal quantum Hamiltonians. Proc. Natl Acad. Sci. USA 115, 9497–9502 (2018).
Zhou, L. & Aharonov, D. Strongly universal Hamiltonian simulators. Preprint at https://arxiv.org/abs/2102.02991 (2021).
Kaubruegger, R. et al. Variational spin-squeezing algorithms on programmable quantum sensors. Phys. Rev. Lett. 123, 260505 (2019).
Liu, H. et al. Prospects of quantum computing for molecular sciences. Mater. Theory 6, 11 (2022).
Bassman, L. et al. Simulating quantum materials with digital quantum computers. Quant. Sci. Technol. 6, 043002 (2021).
Ma, H., Govoni, M. & Galli, G. Quantum simulations of materials on near-term quantum computers. npj Comput. Mater. 6, 85 (2020).
Rieger, H. in Quantum Annealing and Other Optimization Methods (eds Das, A. & Chakrabarti, B. K.) 299–324 (Lecture Notes in Physics, Springer, 2005).
Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W. D. Perspectives of quantum annealing: methods and implementations. Rep. Prog. Phys. 83, 054401 (2020).
Lamata, L., Parra-Rodriguez, A., Sanz, M. & Solano, E. Digital-analog quantum simulations with superconducting circuits. Adv. Phys. X 3, 1457981 (2018).
Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).
Kokail, C. et al. Self-verifying variational quantum simulation of lattice models. Nature 569, 355–360 (2019). This article reports the demonstration of an analogue quantum simulator being used for variational quantum simulation, demonstrating a self-verified solution to a model from high-energy physics.
Babukhin, D. V., Zhukov, A. A. & Pogosov, W. V. Hybrid digital-analog simulation of many-body dynamics with superconducting qubits. Phys. Rev. A 101, 052337 (2020).
Arrazola, I., Pedernales, J. S., Lamata, L. & Solano, E. Digital-analog quantum simulation of spin models in trapped ions. Sci. Rep. 6, 30534 (2016).
Kokail, C., van Bijnen, R., Elben, A., Vermersch, B. & Zoller, P. Entanglement Hamiltonian tomography in quantum simulation. Nat. Phys. 17, 936–942 (2021).
Joshi, M. K. et al. Quantum information scrambling in a trapped-ion quantum simulator with tunable range interactions. Phys. Rev. Lett. 124, 240505 (2020).
Henriet, L. et al. Quantum computing with neutral atoms. Quantum 4, 327 (2020).
Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).
Zhou, L., Wang, S.-T., Choi, S., Pichler, H. & Lukin, M. D. Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020).
Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).
Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).
Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).
Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2, 411–425 (2020).
The Hubbard model at half a century. Nat. Phys. 9, 523 (2013).
Essler, F. H. L., Frahm, H., Göhmann, F., Klümper, A. & Korepin, V. E. The One-Dimensional Hubbard Model (Cambridge Univ. Press, 2005).
Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
von Burg, V. et al. Quantum computing enhanced computational catalysis. Phys. Rev. Res. 3, 033055 (2021).
Bauer, B., Bravyi, S., Motta, M. & Chan, G. K.-L. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 120, 12685–12717 (2020).
Acknowledgements
We acknowledge discussions with B. Kraus and G. H. Low. This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement number 817482 PASQuanS. Work at the University of Strathclyde was supported by the EPSRC Programme Grant DesOEQ (EP/P009565/1), the EPSRC Hub in Quantum Computing and simulation (EP/T001062/1) and AFOSR grant number FA9550-18-1-0064.
Author information
Authors and Affiliations
Contributions
All authors discussed the topics addressed in this Perspective, wrote the article and agreed on the final text. The example of Fig. 2 was produced by S.F. and A.J.D., the digital gate count example was produced by N.P. and M.T., and the Box 3 example was produced by C.K. and P.Z., in discussion with all authors.
Corresponding author
Ethics declarations
Competing interests
M.T. notes that Microsoft is developing digital quantum computers and offers quantum computers and simulators in Azure. The other authors declare no competing interests.
Peer review
Peer review information
Nature thanks Andrew Childs and John Martinis for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Daley, A.J., Bloch, I., Kokail, C. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022). https://doi.org/10.1038/s41586-022-04940-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-022-04940-6
This article is cited by
-
Quantum simulation of fundamental particles and forces
Nature Reviews Physics (2023)
-
Quantum simulation of Hawking radiation and curved spacetime with a superconducting on-chip black hole
Nature Communications (2023)
-
Practical advantage of quantum machine learning in ghost imaging
Communications Physics (2023)
-
Twenty-five years of analogue quantum simulation
Nature Reviews Physics (2023)
-
IBM quantum computer passes calculation milestone
Nature (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.