Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly efficient blue InGaN nanoscale light-emitting diodes

Abstract

Indium gallium nitride (InGaN)-based micro-LEDs (μLEDs) are suitable for meeting ever-increasing demands for high-performance displays owing to their high efficiency, brightness and stability1,2,3,4,5. However, μLEDs have a large problem in that the external quantum efficiency (EQE) decreases with the size reduction6,7,8,9. Here we demonstrate a blue InGaN/GaN multiple quantum well (MQW) nanorod-LED (nLED) with high EQE. To overcome the size-dependent EQE reduction problem8,9, we studied the interaction between the GaN surface and the sidewall passivation layer through various analyses. Minimizing the point defects created during the passivation process is crucial to manufacturing high-performance nLEDs. Notably, the sol–gel method is advantageous for the passivation because SiO2 nanoparticles are adsorbed on the GaN surface, thereby minimizing its atomic interactions. The fabricated nLEDs showed an EQE of 20.2 ± 0.6%, the highest EQE value ever reported for the LED in the nanoscale. This work opens the way for manufacturing self-emissive nLED displays that can become an enabling technology for next-generation displays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication of nLEDs and their optical properties.
Fig. 2: Variation in EL and current-density–voltage curves of nLEDs according to the surface passivation method: plasma-enhanced ALD and sol–gel SiO2 deposition.
Fig. 3: Surface analysis of the nLEDs after each fabrication step.
Fig. 4: Defects in the sidewalls of InGaN quantum wells fabricated using different passivation methods.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the paper.

Code availability

We used the commercially available software of Ansys Lumerical for the FDTD simulation and VASP for the DFT calculations. The simulation settings are presented in Methods. The atomic structure data for the defects are available at Zenodo, https://doi.org/10.5281/zenodo.6544988.

References

  1. Lin, J. Y. & Jiang, H. X. Development of microLED. Appl. Phys. Lett. 116, 100502 (2020).

    Article  CAS  ADS  Google Scholar 

  2. Wierer Jr., J. J. & Tansu, N. III-nitride micro-LEDs for efficient emissive displays. Laser Photonics Rev. 13, 1900141 (2019).

    Article  ADS  CAS  Google Scholar 

  3. Virey, E. H. & Baron, N. 45-1: Status and prospects of microLED displays. SID Symp. Dig. Tech. Pap. 49, 593–596 (2018).

    Article  Google Scholar 

  4. Templier, F. GaN‐based emissive microdisplays: a very promising technology for compact, ultra‐high brightness display systems. J. Soc. Inf. Display 24, 669–675 (2016).

    Article  CAS  Google Scholar 

  5. Jiang, H. X. & Lin, J. Y. Nitride micro-LEDs and beyond—a decade progress review. Opt. Express 21, A475–A484 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Olivier, F. et al. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin. 191, 112–116 (2017).

    Article  CAS  Google Scholar 

  7. Hwang, D. et al. Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs. Appl. Phys. Express 10, 032101 (2017).

    Article  ADS  Google Scholar 

  8. Konoplev, S. S., Bulashevich, K. A. & Karpov, S. Y. From large-size to micro-LEDs: scaling trends revealed by modeling. Phys. Status Solidi A 215, 1700508 (2018).

    Article  ADS  CAS  Google Scholar 

  9. Smith, J. M. et al. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 µm diameter. Appl. Phys. Lett. 116, 071102 (2020).

    Article  CAS  ADS  Google Scholar 

  10. Schubert, E. F. Light-Emitting Diodes (Cambridge Univ. Press, 2006).

  11. Ren, A. et al. Emerging light-emitting diodes for next-generation data communications. Nat. Electron. 4, 559–572 (2021).

    Article  Google Scholar 

  12. Biwa, G. et al. Technologies for the Crystal LED display system. J. Soc. Inf. Display 29, 435–445 (2021).

    Article  Google Scholar 

  13. Huang, Y. et al. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9, 105 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Kawanishi, H. et al. High-resolution and high-brightness full-colour “Silicon Display” for augmented and mixed reality. J. Soc. Inf. Display 29, 57–67 (2021).

    Article  CAS  Google Scholar 

  15. Xiong, J. et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci. Appl. 10, 216 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Liu, Z. et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 9, 83 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Zhang, L. et al. 31.1: Invited Paper: Monochromatic active matrix micro-LED micro-displays with >5,000 dpi pixel density fabricated using monolithic hybrid integration process. SID Symp. Dig. Tech. Pap. 49, 333–336 (2018).

    Article  CAS  Google Scholar 

  18. Bulashevich, K. A. & Karpov, S. Y. Impact of surface recombination on efficiency of III-nitride light-emitting diodes. Phys. Status Solidi RRL 10, 480–484 (2016).

    Article  CAS  Google Scholar 

  19. Sung, Y. G. Micro-led element for horizontally-aligned assembly, method for manufacturing same, and horizontally-aligned assembly comprising same. US patent US20170317228A1 (2017).

  20. Park, H., Kim, B.-J. & Kim, J. Electroluminescence from InGaN/GaN multiquantum-wells nanorods light-emitting diodes positioned by non-uniform electric fields. Opt. Express 20, 25249–25254 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Park, H. et al. Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly. Sci. Rep. 6, 28312 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Yang, C. et al. Enhancement in light extraction efficiency of GaN-based light-emitting diodes using double dielectric surface passivation. Opt. Photonics J. 2, 185–192 (2012).

    Article  CAS  ADS  Google Scholar 

  23. Bai, J. et al. Ultrasmall, ultracompact and ultrahigh efficient InGaN micro light emitting diodes (μLEDs) with narrow spectral line width. ACS Nano 14, 6906–6911 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wong, M. S. et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt. Express 26, 21324–21331 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Wong, M. S. et al. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation. Appl. Phys. Express 12, 097004 (2019).

    Article  CAS  ADS  Google Scholar 

  26. Ley, R. T. et al. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation. Appl. Phys. Lett. 116, 251104 (2020).

    Article  CAS  ADS  Google Scholar 

  27. Dubey, R., Rajesh, Y. & More, M. Synthesis and characterization of SiO2 nanoparticles via sol-gel method for industrial applications. Mater. Today Proc. 2, 3575–3579 (2015).

    Article  CAS  Google Scholar 

  28. Azlina, H., Hasnidawani, J., Norita, H. & Surip, S. Synthesis of SiO2 nanostructures using sol-gel method. Acta Phys. Pol. A 129, 842–844 (2016).

    Article  CAS  ADS  Google Scholar 

  29. Zhang, W. et al. Preparation of SiO2 anti-reflection coatings by sol-gel method. Energy Procedia 130, 72–76 (2017).

    Article  CAS  Google Scholar 

  30. Lai, Y.-Y. et al. The study of wet etching on GaN surface by potassium hydroxide solution. Res. Chem. Intermed. 43, 3563–3572 (2017).

    Article  CAS  Google Scholar 

  31. Peñalba, M., Juaristi, J., Zarate, E., Arnau, A. & Bauer, P. Electronic stopping power of Al2O3 and SiO2 for H, He, and N. Phys. Rev. A 64, 012902 (2001).

    Article  ADS  CAS  Google Scholar 

  32. Wilk, G. D., Wallace, R. M. & Anthony, J. High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001).

    Article  CAS  ADS  Google Scholar 

  33. Lee, D., Mitchell, B., Fujiwara, Y. & Dierolf, V. Thermodynamics and kinetics of three Mg–H–VN complexes in Mg:GaN from combined first-principles calculation and experiment. Phys. Rev. Lett. 112, 205501 (2014).

    Article  ADS  CAS  Google Scholar 

  34. Miceli, G. & Pasquarello, A. Self-compensation due to point defects in Mg-doped GaN. Phys. Rev. B 93, 165207 (2016).

    Article  ADS  CAS  Google Scholar 

  35. Lyons, J. L., Alkauskas, A., Janotti, A. & Van de Walle, C. G. First‐principles theory of acceptors in nitride semiconductors. Phys. Status Solidi B 252, 900–908 (2015).

    Article  CAS  ADS  Google Scholar 

  36. Reshchikov, M. A. & Morkoç, H. Luminescence properties of defects in GaN. J. Appl. Phys. 97, 061301 (2005).

    Article  ADS  CAS  Google Scholar 

  37. Liu, B. et al. Origin of yellow-band emission in epitaxially grown GaN nanowire arrays. ACS Appl. Mater. Interfaces 6, 14159–14166 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Koyama, H. Cathodoluminescence study of SiO2. J. Appl. Phys. 51, 2228–2235 (1980).

    Article  CAS  ADS  Google Scholar 

  39. Zhu, D. et al. The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 94, 081113 (2009).

    Article  ADS  CAS  Google Scholar 

  40. Tian, P. et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Appl. Phys. Lett. 101, 231110 (2012).

    Article  ADS  CAS  Google Scholar 

  41. Zhuang, D. & Edgar, J. H. Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng. R Rep. 48, 1–46 (2005).

    Article  CAS  Google Scholar 

  42. Foster, G. M. et al. Recovery from plasma etching-induced nitrogen vacancies in p-type gallium nitride using UV/O3 treatments. Appl. Phys. Lett. 117, 082103 (2020).

    Article  CAS  ADS  Google Scholar 

  43. Kato, M. et al. Characterization of plasma etching damage on p-type GaN using Schottky diodes. J. Appl. Phys. 103, 093701 (2008).

    Article  ADS  CAS  Google Scholar 

  44. Von Bardeleben, H. J. et al. Identification of the nitrogen split interstitial (N–N)N in GaN. Phys. Rev. Lett. 109, 206402 (2012).

    Article  ADS  CAS  Google Scholar 

  45. Reshchikov, M. A. et al. Evaluation of the concentration of point defects in GaN. Sci. Rep. 7, 9297 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Wickramaratne, D. et al. Defect identification based on first-principles calculations for deep level transient spectroscopy. Appl. Phys. Lett. 113, 192106 (2018).

    Article  ADS  CAS  Google Scholar 

  47. Dreyer, C. E. et al. Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters. Appl. Phys. Lett. 108, 141101 (2016).

    Article  ADS  CAS  Google Scholar 

  48. Lyons, J. L. & Van de Walle, C. G. Computationally predicted energies and properties of defects in GaN. NPJ Comput. Mater. 3, 12 (2017).

    Article  ADS  CAS  Google Scholar 

  49. Mizoguchi, T. et al. First-principles calculations of ELNES and XANES of selected wide-gap materials: dependence on crystal structure and orientation. Phys. Rev. B 70, 045103 (2004).

    Article  ADS  CAS  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  ADS  Google Scholar 

  51. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  52. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Karsai, F. et al. Effects of electron-phonon coupling on absorption spectrum: K edge of hexagonal boron nitride. Phys. Rev. B 98, 235205 (2018).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Kwag and D. Kim for encouragement and full support; Y. Choi and S. Yoon for support and technical advice on nLED fabrication; S.-C. Jo for his valuable advice; H. Cho for his help in nLED fabrication and characterization; H. Cha and S. Kim for their assistance with testing nLEDs; Y. Han and Y. Shim for the LEE simulation; M. Kim at Seoul National University for the deeply insightful discussion.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and J.H. prepared the epi-wafer and fabricated the nanorods. D.-u.K. and J.Y. fabricated the nLEDs and the pixels using the nanorods. Y.K., I.K., C.J. and N.H. synthesized the sol–gel SiO2 layer on the nanorods. J.K. and J.-h.B. analysed and interpreted the STEM-EELS data. K.Y.Y., D.K., J.J., J.C. and R.K. carried out the PL, DLTS, ESR and XPS analyses. Joohee Lee and S.H.J. calculated the defect levels of GaN. S.H.O. and Jaekwang Lee contributed to the interpretation of the experimental results and calculated the data. N.A. and C.L. supervised the research and coordinated the work. M.S. contributed to the experiments and analyses. M.S. and C.L. wrote the manuscript, with input from all other authors.

Corresponding authors

Correspondence to Mihyang Sheen or Changhee Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Steven DenBaars, Zhaojun Liu and Shin-Tson Wu for their contribution to the peer review of this work.

Additional information

Extended data

is available for this paper at https://doi.org/10.1038/s41586-022-04933-5.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Size-dependent EQE of μLEDs.

The EQE values are presented according to recent results in the literature.

Extended Data Fig. 2 Comparison between thermal ALD SiO2 and plasma-enhanced ALD SiO2 passivation.

a, EQE curves for the nLEDs with the 60-nm-thick SiO2 passivation layer deposited with thermal ALD and plasma-enhanced ALD processes. b, Thermal desorption spectroscopy (TDS) for measuring H2 outgassing. c, X-ray reflectivity measurement for thin-film density. d, XPS core-level spectra for Si 2p and O 1s obtained from a 20-nm-thick SiO2 layer deposited on a Si substrate with thermal ALD and plasma-assisted ALD processes.

Extended Data Fig. 3 Influence of the GaN substrate on yellow luminescence in the PL spectra of nanorods.

a, b, PL images of the plasma-enhanced ALD SiO2 (60 nm thickness) coated nanorods dispersed on wafer (a) and glass (b). The PL spectra from the wafer and glass specimens are compared in c. The YL region of the PL spectra are enlarged in d. The sol–gel SiO2 (25 nm thickness) coated nanorods are presented in eh in the same manner. The YL is compared in i for the wafer specimen and in j for the glass specimen.

Extended Data Fig. 4 LEE simulation and EQE measurement set-up for nLED devices.

a, Schematic diagram of the nLED pixel structure. b, Cross-sectional optical field distribution of the nLED device. c, Schematic diagram of the EQE measurement with an integrating sphere (ISP 40-101) and calibrated spectroradiometer system for the nLED TEG cell. Each TEG cell is composed of 60 pixels and each pixel is composed of 6–9 nanorods connected in parallel. d, Schematic diagram of the EQE measurement with a full integrating sphere (ISP 250-211) and calibrated spectroradiometer system for the nLED-array chip. e, EQE curves measured in the configurations of c and d are compared for the 60-nm-thick SiO2 passivation layer deposited with the plasma-enhanced ALD process.

Extended Data Fig. 5 Atomic structure between the GaN surface and SiO2 insulator.

ae, STEM-HAADF images of the MQWs in the sidewall region according to the fabrication steps, that is, dry etch (a), wet etch (b), sol–gel SiO2 deposition (c) and plasma-enhanced ALD SiO2 deposition of thicknesses of 2 nm (d) and 60 nm (e). The increase in the plasma-induced amorphization at the quantum well sidewall with increasing thickness of the SiO2 layer from 2 nm (d) to 60 nm (e) is evident.

Extended Data Fig. 6 Surface defects of nLEDs according to their fabrication steps.

a, Optical micrographs of the nLEDs dispersed on Si substrates. b, Ga 3d state ratios estimated using XPS. Fitting of XPS core-level spectra of dry-etched nanorods for Ga 3d (c) and N 1s (d). XPS core-level spectra for Si 2p (e), O 1s (f) and C 1s (g).

Extended Data Fig. 7 Analysis of trap levels and their concentrations using DLTS.

af, Bulk LED chip. gl, nLED-array chip. a,g, Schematic of the chip. DLTS spectra obtained at forward bias (b,h) and enlarged spectra (c,i) in the region around the peak. DLTS spectra obtained at reverse bias (e,k) and enlarged spectra (f,l) in the region around the peak. d,j, Trap levels with their concentrations. They clearly show that the hole traps are dominant, with high concentrations in the nLED-array chip.

Extended Data Fig. 8 Post-treatments of the sol–gel SiO2-coated nLEDs.

a, PL decay traces of the nLEDs averaged over the areas indicated in the images below. The carrier lifetime increased after baking the sample at 250 °C for 1 h. b, The EL efficiency versus current density of the nLEDs in a pixel structure. The EL performance is the same before and after the annealing. At a high current injection, the EL efficiency is slightly increased. c, Comparison of outgassing between the SiO2 layers using pyrolysis–gas chromatography–mass spectrometry with evolved gas analysis–mass spectrometry.

Extended Data Fig. 9 Synthesis of SiO2 passivation layer using the sol–gel method.

ac, Transmission electron microscopy images of nLEDs passivated with sol–gel SiO2 at reaction times of 15 min (a), 30 min (b) and 60 min (c). df, In addition, the reaction was repeated twice under the same synthesizing conditions to increase their thicknesses. g, The thickness of the SiO2 layer was saturated at 23 nm after reaction for 60 min. h, PL intensities of the nanorods. We obtained the PL spectra from three different positions on a 4-inch wafer. The variation in the PL intensity with respect to the position is small. Furthermore, the PL intensity increased with an increase in the thickness of the sol–gel SiO2 layer.

Extended Data Fig. 10 Comparison between PL and EL spectra.

a, Plasma-enhanced ALD SiO2 passivation. b, Sol–gel SiO2 passivation. The EL spectra are obtained at a current density of 10 mA cm−2, which is near the peak EQE position.

Extended Data Fig. 11 Comparison between KOH wet etching and KOH wet etching plus plasma-enhanced ALD SiO2 passivation process.

a, b, PL spectra (a) and monochromatic CL images at 445 nm (b) of the nanorods for KOH wet etching and plasma ALD SiO2 deposited. c, HAADF-STEM images of the nanorods’ sidewalls. The yellow arrows indicate the native GaOx for the KOH case and the passivation-generated GaOx for the plasma SiO2 case. d, XPS core-level spectra of the nanorods: Ga 3d and N 1s.

Extended Data Fig. 12 Extraction of the ideality factor.

The dashed red lines represent the linear fittings for calculating the ideality factor in the J–V curves of devices with the plasma-enhanced ALD SiO2 passivation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheen, M., Ko, Y., Kim, Du. et al. Highly efficient blue InGaN nanoscale light-emitting diodes. Nature 608, 56–61 (2022). https://doi.org/10.1038/s41586-022-04933-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04933-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing