Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Timescales for pluton growth, magma-chamber formation and super-eruptions

Abstract

Generation of silicic magmas leads to emplacement of granite plutons, huge explosive volcanic eruptions and physical and chemical zoning of continental and arc crust1,2,3,4,5,6,7. Whereas timescales for silicic magma generation in the deep and middle crust are prolonged8, magma transfer into the upper crust followed by eruption is episodic and can be rapid9,10,11,12. Ages of inherited zircons and sanidines from four Miocene ignimbrites in the Central Andes indicate a gap of 4.6 Myr between initiation of pluton emplacement and onset of super-eruptions, with a 1-Myr cyclicity. We show that inherited zircons and sanidine crystals were stored at temperatures <470 °C in these plutons before incorporation in ignimbrite magmas. Our observations can be explained by silicic melt segregation in a middle-crustal hot zone with episodic melt ascent from an unstable layer at the top of the zone with a timescale governed by the rheology of the upper crust. After thermal incubation of growing plutons, large upper-crustal magma chambers can form in a few thousand years or less by dike transport from the hot-zone melt layer. Instability and disruption of earlier plutonic rock occurred in a few decades or less just before or during super-eruptions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location and geology of the Oxaya early Miocene ignimbrite formation, Central Andes.
Fig. 2: Geochronological data for the four ignimbrites of the Oxaya Formation.
Fig. 3: The evolution of 40Ar–39Ar ages in sanidine as a function of time and temperature owing to diffusion and 40Ar in growth.
Fig. 4: Simplified conceptual model of a transcrustal magmatic system.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information files. All isotopic and related geochemical data were placed in EarthChem: https://earthchem.org; https://doi.org/10.26022/IEDA/112268.

Code availability

Spreadsheets for carrying out the argon diffusion calculations can be found at: https://github.com/Thermochronology-At-Purdue/Oxaya2021.

References

  1. Lipman, P. W. Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geosphere 3, 42–70 (2007).

    Article  ADS  Google Scholar 

  2. Glazner, A. F., Bartley, J. M., Coleman, D. S., Gray, W. & Taylor, R. Z. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14, 4–12 (2004).

    Article  Google Scholar 

  3. Bachmann, O., Miller, C. & De Silva, S. The volcanic–plutonic connection as a stage for understanding crustal magmatism. J. Volcanol. Geotherm. Res. 167, 1–23 (2007).

    Article  ADS  CAS  Google Scholar 

  4. Frazer, R. E., Coleman, D. S. & Mills, R. D. Zircon U‐Pb geochronology of the Mount Givens Granodiorite: implications for the genesis of large volumes of eruptible magma. J. Geophys. Res. Solid Earth 119, 2907–2924 (2014).

    Article  ADS  CAS  Google Scholar 

  5. Lipman, P. W. & Bachmann, O. Ignimbrites to batholiths: integrating perspectives from geological, geophysical, and geochronological data. Geosphere 11, 705–743 (2015).

    Article  ADS  Google Scholar 

  6. Charlier, B. L. A. et al. Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U–Th and U–Pb systematics in zircons. J. Petrol. 46, 3–32 (2005).

    Article  ADS  CAS  Google Scholar 

  7. de Silva, S. L. & Gosnold, W. D. Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. J. Volcanol. Geotherm. Res. 167, 320–335 (2007).

    Article  ADS  CAS  Google Scholar 

  8. Sparks, R. S. J. et al. Formation and dynamics of magma reservoirs. Philos. Trans. R. Soc. A 377, 20180019 (2019).

    Article  ADS  CAS  Google Scholar 

  9. Druitt, T. H., Costa, F., Deloule, E., Dungan, M. & Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Shamloo, H. I. & Till, C. B. Decadal transition from quiescence to supereruption: petrologic investigation of the Lava Creek Tuff, Yellowstone Caldera, WY. Contrib. Mineral. Petrol. 174, 32 (2019).

    Article  ADS  CAS  Google Scholar 

  11. Pamukçu, A. S., Wright, K. A., Gualda, G. A. R. & Gravley, D. Magma residence and eruption at the Taupo Volcanic Center (Taupo Volcanic Zone, New Zealand): insights from rhyolite‑MELTS geobarometry, diffusion chronometry, and crystal textures. Contrib. Mineral. Petrol. 175, 48 (2020).

    Article  ADS  CAS  Google Scholar 

  12. Rubin, A. E. et al. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. Science 356, 1154–1156 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Annen, C., Scaillet, B. & Sparks, R. S. J. Thermal constraints on the emplacement rate of a large intrusive complex: the Manaslu Leucogranite, Nepal Himalaya. J. Petrol. 47, 71–95 (2006).

    Article  CAS  Google Scholar 

  14. Annen, C. From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet. Sci. Lett. 284, 409–416 (2009).

    Article  ADS  CAS  Google Scholar 

  15. Annen, C., Blundy, J. D., Leuthold, J. & Sparks, R. S. J. Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230, 206–221 (2015).

    Article  ADS  CAS  Google Scholar 

  16. Gregg, P. M., de Silva, S. L., Grosfils, E. B. & Parmigiani, J. P. Catastrophic caldera-forming eruptions: thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. J. Volcanol. Geotherm. Res. 241–242, 1–12 (2012).

    Article  ADS  CAS  Google Scholar 

  17. Paterson, S., Okaya, D., Memeti, V., Economos, R. & Miller, R. B. Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: combined field, geochronologic, and thermal modeling studies. Geosphere 7, 1439–1468 (2011).

    Article  ADS  Google Scholar 

  18. Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Article  CAS  Google Scholar 

  19. Solano, J. M. S., Jackson, M. D., Sparks, R. S. J., Blundy, J. D. & Annen, C. Segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. J. Petrol. 53, 1999–2026 (2012).

    Article  ADS  CAS  Google Scholar 

  20. Cashman, K. V., Sparks, R. S. J. & Blundy, J. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).

    Article  PubMed  CAS  Google Scholar 

  21. Jackson, M., Blundy, J. & Sparks, R. S. J. Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust. Nature 564, 405–409 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Seropian, G., Rust, A. & Sparks, R. S. J. The gravitational stability of lenses in magma mushes: confined Rayleigh-Taylor instabilities. J. Geophys. Res. 123, 3593–3607 (2017).

    Article  Google Scholar 

  23. Walker, B. A., Grunder, A. L. & Wooden, J. L. Organization and thermal maturation of long-lived arc systems: evidence from zircons at the Aucanquilcha volcanic cluster, northern Chile. Geology 38, 1007–1010 (2010).

    Article  ADS  CAS  Google Scholar 

  24. Cashman, K. V. & Giordano, G. Calderas and magma reservoirs. J. Volcanol. Geotherm. Res. 288, 28–45 (2014).

    Article  ADS  CAS  Google Scholar 

  25. Cooper, K. M. & Kent, A. J. R. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506, 480–483 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Andersen, N. L., Jicha, B. R., Singer, B. S. & Hildreth, W. Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage. Proc. Natl Acad. Sci. 114, 12407–12412 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Zalinge, M. E., Sparks, R. S. J., Cooper, F. J. & Condon, D. Early Miocene large-volume ignimbrites of the Oxaya Formation, Central Andes. J. Geol. Soc. 173, 716–733 (2016).

    Article  Google Scholar 

  28. García, M., Gardeweg, M., Clavero, J. & Hérail, G. Arica map: Tarapacá region, scale 1:250,000. In: Carta Geológica de Chile, Serie Geología Básica, 84, Servicio Nacional de Geología y Minería, Santiago (2004).

  29. Keller, C. B. Chron.jl: a Bayesian framework for integrated eruption age and age-depth modelling. https://doi.org/10.17605/osf.io/TQX3F (2018).

  30. van Zalinge, M. E., Sparks, R. S. J. & Blundy, J. D. Petrogenesis of the large-volume Cardones ignimbrite, Chile; development and destabilization of a complex magma–mush system. J. Petrol. 58, 1975–2006 (2018).

    Article  CAS  Google Scholar 

  31. Freymuth, H., Brandmeier, M. & Wörner, G. The origin and crust/mantle mass balance of Central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes. Contrib. Mineral. Petrol. 169, 58 (2015).

    Article  ADS  CAS  Google Scholar 

  32. Lissenberg, C. J., Rioux, M., Shimizu, N., Bowring, S. A. & Mével, C. Zircon dating of oceanic crustal accretion. Science 323, 1048–1050 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Wotzlaw, J.-F. et al. Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. Geology 41, 867–870 (2013).

    Article  ADS  CAS  Google Scholar 

  34. Samperton, K. M., Bell, E. A., Barboni, M., Keller, C. B. & Schoene, B. Zircon age-temperature-compositional spectra in plutonic rocks. Geology 45, 983–986 (2017).

    Article  ADS  Google Scholar 

  35. Ellis, B. S. et al. Split-grain 40Ar/39Ar dating: integrating temporal and geochemical data from crystal cargoes. Chem. Geol. 457, 15–23 (2017).

    Article  ADS  CAS  Google Scholar 

  36. Pinto, L., Hérail, G., Fontan, F. & Parseval, P. Neogene erosion and uplift of the western edge of the Andean Plateau as determined by detrital heavy mineral analysis. Sediment. Geol. 195, 217–237 (2007).

    Article  ADS  Google Scholar 

  37. Wotzlaw, J. F., Decou, A., von Eynatten, H., Worner, G. & Frei, D. Jurassic to Palaeogene tectono-magmatic evolution of northern Chile and adjacent Bolivia from detrital zircon U-Pb geochronology and heavy mineral provenance. Terra Nova 23, 399–406 (2011).

    Article  ADS  Google Scholar 

  38. Hora, J. M. et al. Volcanic biotite-sanidine 40Ar/39Ar age discordances reflect Ar partitioning and pre-eruption closure in biotite. Geology 38, 923–926 (2010).

    Article  ADS  CAS  Google Scholar 

  39. Platzman, E. S., Sparks, R. S. J. & Cooper, F. J. Fabrics, facies, and flow through a large-volume ignimbrite: Pampa De Oxaya, Chile. Bull. Volcanol. 82, 8 (2020).

    Article  ADS  Google Scholar 

  40. Schöpa, A. & Annen, C. The effects of magma flux variations on the formation and lifetime of large silicic magma chambers. J. Geophys. Res. Solid Earth 118, 926–942 (2013).

    Article  ADS  Google Scholar 

  41. Schöpa, A., Annen, C., Dilles, J. H., Sparks, R. S. J. & Blundy, J. D. Magma emplacement rates and porphyry copper deposits: thermal modeling of the Yerington batholith, Nevada. Econ. Geol. 112, 1653–1672 (2018).

    Article  Google Scholar 

  42. Burgmann, R. & Dresen, G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 36, 531–567 (2008).

    Article  ADS  CAS  Google Scholar 

  43. Petford, N., Cruden, A. R., McCaffrey, K. J. W. & Vigneresse, J. L. Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408, 669–673 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Burov, E., Jaupart, C. & Guillou-Frottier, L. Ascent and emplacement of buoyant magma bodies in brittle-ductile upper crust. J. Geophys. Res. Solid Earth 108, 2177 (2003).

    Article  ADS  Google Scholar 

  45. Suckale, J., Qin, Z., Picchi, D., Keller, T. & Battiato, I. Bistability of buoyancy-driven exchange flows in vertical tubes. J. Fluid Mech. 850, 525–550 (2018).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  46. Jackson, M. D., Cheadle, M. J. & Atherton, M. P. Quantitative modeling of granitic melt generation and segregation in the continental crust. J. Geophys. Res. 108, 2332–2353 (2003).

    ADS  Google Scholar 

  47. Huppert, H. E. & Sparks, R. S. J. The generation of granite by intrusion of basalt into the continental crust. J. Petrol. 29, 599–624 (1988).

    Article  ADS  CAS  Google Scholar 

  48. Bachmann, O. & Bergantz, G. W. Gas percolation in upper crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. J. Volcanol. Geotherm. Res. 149, 85–102 (2006).

    Article  ADS  CAS  Google Scholar 

  49. Huber, C., Bachmann, O. & Manga, M. Two competing effects of volatiles on heat transfer in crystal-rich magmas: thermal insulation vs defrosting. J. Petrol. 51, 847–867 (2010).

    Article  ADS  CAS  Google Scholar 

  50. Mason, B., Pyle, D. & Oppenheimer, C. The size and frequency of the largest explosive eruptions on Earth. Bull. Volcanol. 66, 735–748 (2004).

    Article  ADS  Google Scholar 

  51. Mark, D. F. et al. A high-precision 40Ar/39Ar age for the Young Toba Tuff and dating of ultra-distal tephra: forcing of Quaternary climate and implications for hominid occupation of India. Quat. Geochronol. 21, 90–103 (2014).

    Article  Google Scholar 

  52. Renne, P. R., Cassata, W. S. & Morgan, L. E. The isotopic composition of atmospheric argon and 40Ar/39Ar geochronology: time for a change? Quat. Geochronol. 4, 288–298 (2009).

    Article  Google Scholar 

  53. Lee, J. Y. et al. A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 70, 4507–4512 (2006).

    Article  ADS  CAS  Google Scholar 

  54. Mark, D. F., Stuart, F. M. & de Podesta, M. New high-precision measurements of the isotopic composition of atmospheric argon. Geochim. Cosmochim. Acta 75, 7494–7501 (2011).

    Article  ADS  CAS  Google Scholar 

  55. Stoenner, R. W., Schaeffer, O. A. & Katcoff, S. Half-lives of argon-37, argon-39, and argon-42. Science 148, 1325–1328 (1965).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Renne, P. R. & Norman, E. B. Determination of the half-life of 37Ar by mass spectrometry. Phys. Rev. C 63, 047302 (2001).

    Article  ADS  CAS  Google Scholar 

  57. Renne, P. R., Sharp, Z. D. & Heizler, M. T. Cl-derived argon isotope production in the CLICIT facility of OSTR reactor and the effects of the Cl-correction in 40Ar/39Ar geochronology. Chem. Geol. 255, 463–466 (2008).

    Article  ADS  CAS  Google Scholar 

  58. Renne, P. R. Some footnotes to the optimization-based calibration of the 40Ar/39Ar system. Geol. Soc. Lond. Spec. Publ. 378, 21–31 (2014).

    Article  ADS  CAS  Google Scholar 

  59. Renne, P. R., Mundil, R., Balco, G., Min, K. & Ludwig, K. R. Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim. Cosmochim. Acta 74, 5349–5367 (2010).

    Article  ADS  CAS  Google Scholar 

  60. Renne, P. R., Mundil, R., Balco, G., Min, K. & Ludwig, K. R. Response to the comment by W. H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology”. Geochim. Cosmochim. Acta 75, 5097–5100 (2011).

    Article  ADS  CAS  Google Scholar 

  61. Kuiper, K. F. et al. Synchronizing rock clocks of Earth history. Science 320, 500–504 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Mark, D. F. et al. High-precision 40Ar/39Ar dating of Pleistocene tuffs and temporal anchoring of the Matuyama-Brunhes Boundary. Quat. Geochronol. 39, 1–23 (2017).

    Article  Google Scholar 

  63. Ellis, B. S. et al. Split-grain 40Ar/39Ar dating: integrating temporal and geochemical data from crystal cargoes. Chem. Geol. 457, 15–23 (2017).

    Article  ADS  CAS  Google Scholar 

  64. Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889 (1971).

    Article  ADS  Google Scholar 

  65. Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).

    Article  ADS  CAS  Google Scholar 

  66. McLean, N. M., Condon, D. J., Schoene, B. & Bowring, S. A. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochim. Cosmochim. Acta 164, 481–502 (2015).

    Article  ADS  CAS  Google Scholar 

  67. Wolf, R. A., Farley, K. A. & Kass, D. M. Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer. Chem. Geol. 148, 105–114 (1998).

    Article  ADS  CAS  Google Scholar 

  68. McDougall, I., & Harrison, T. M. Geochronology and Thermochronology by the 40Ar/39Ar Method (Oxford Univ. Press, 1999).

  69. Cassata, W. S. & Renne, P. R. Systematic variations of argon diffusion in feldspars and implications for thermochronometry. Geochim. Cosmochim. Acta 112, 251–287 (2013).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This project was financed by BHP supporting the PhD of M.E.v.Z. BHP has given permission to publish. K. Cooper and an anonymous reviewer are thanked for their supportive and careful reviews. Zircon and sanidine analyses were supported by Natural Environment Research Council (NERC) Isotope Geosciences Facilities Steering Committee grant IP-1466-1114 and Royal Society Research Grant RG140683 to F.J.C. D. Condon is thanked for his help with the analyses of inherited zircons. NERC are thanked for continued funding of the National Environmental Isotope Facility. R.S.J.S. acknowledges support of a Leverhulme Trust Emeritus Fellowship. There are no financial or non-financial competing interests.

Author information

Authors and Affiliations

Authors

Contributions

M.E.v.Z. carried out fieldwork, collected the samples and prepared them for geochronological analyses. D.F.M. conducted the 40Ar–39Ar analyses at the East Kilbride laboratories. C.B.K. and D.F.M. applied a Bayesian model to interpret the geochronological data. D.F.M. and R.S.J.S. integrated and interpreted the geochronology and developed the scientific narrative. M.M.T. contributed argon diffusion modelling to estimate storage temperatures and magma residence times for sanidine crystals. A.R. analysed Rayleigh–Taylor experiment data for the diapir detachment timescale. A.R. and R.S.J.S. developed the exchange flow models for magma transport. R.S.J.S. and D.F.M. led drafting the article and all authors contributed to the writing. F.J.C. and R.S.J.S. supervised PhD student M.E.v.Z. R.S.J.S. is the corresponding author. There are no financial or non-financial competing interests.

Corresponding author

Correspondence to R. S. J. Sparks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Kari Cooper and the other, anonymous, reviewer for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Repose interval durations.

The posterior distributions for the durations of the repose intervals of each sequential pair of eruptions (Poconchile to Cardones, Cardones to Molinos, and Molinos to Oxaya), as illustrated for each pair by a normalized histogram of the stationary distribution of a Markov chain Monte Carlo model that integrates the constraints provided by (1) the posterior eruption age distributions for each ignimbrite derived from the Bayesian eruption age models, as well as (2) the relative age constraints provided by the stratigraphic superposition of the ignimbrite deposits. Although the absolute time uncertainties of the absolute eruption ages shown in Fig. 2 are substantially increased by systematic (tracer/standard and decay constant) uncertainties, such systematic uncertainties effectively cancel when calculating the relative durations shown here.

Extended Data Fig. 2 The form of the relative closure distribution, scaled from time of first closure (1.0) to time of eruption (0.0).

The empirical (‘bootstrapped’) estimate of the form of this closure distribution (thick blue line) decreases as a function of time before eruption, following a trend closely resembling that of a similarly scaled exponential distribution (thick black line). This bootstrapped closure distribution is calculated as the kernel density estimate of the union of the sets of scaled single-grain closure ages for each individual sample, the probability density functions of which are each shown as thin coloured lines in the background. Both the highly dispersed single-grain volcanic sanidine Ar–Ar age distributions of the four Central Andean ignimbrites (this study) as well as the similarly dispersed single-grain volcanic sanidine Ar–Ar age distributions of the Mesa Falls Tuff (Ellis et al., 2017)63 are consistent with an exponential relative closure distribution of this form.

Extended Data Table 1 Geochronological data. Locations of drill holes are shown in Fig. 1b
Extended Data Table 2 Configuration of the Nu Plasma HR ‘Zircon’ block used for U–Pb geochronology at the Geochronology and Tracers Facility, British Geological Survey

Supplementary information

Supplementary Table 1

Ar–Ar geochronology data summary. A tabulation of all Ar–Ar laser fusion data. The analytical conditions and calculation parameters are given in the sheets entitled: irradiation; parameters; and background and discrimination. Sample data are in the data summary sheet with localities listed in Extended Data Table 1. Each row is for a fragment of separated sanidine. Argon isotopic data, isotope ratios, age calculations and 2σ analytical error are listed in the columns. References in spreadsheet are numbered 53 (Lee et al. 2006) and 54 (Mark et al. 2011) in the main text.

Supplementary Table 2

U–Pb LA-ICP-MS data summary. A tabulation of all zircon data. Information on samples are listed in columns A and B and their localities are provided in Extended Table 1. Footnotes in the spreadsheet provide analytical parameter information and uncertainty assumptions.

Supplementary Table 3

Bayesian eruption age summary. A tabulation of all Bayesian eruption ages, age uncertainties both with and without systematic uncertainty, and upper and lower 95% confidence intervals based on (A) Ar–Ar geochronology and (B) U–Pb geochronology for (1) Poconchile, (2) Cardones, (3) Molinos and (4) Oxaya (this work), as well as (5) Mesa Falls (Ellis et al. 2017; reference 63 in the main text)—all datasets with large primary age dispersion in both U–Pb and Ar–Ar systems preventing a simple traditional interpretation of, for example, a weighted mean as an eruption age.

Peer Review File

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Zalinge, M.E., Mark, D.F., Sparks, R.S.J. et al. Timescales for pluton growth, magma-chamber formation and super-eruptions. Nature 608, 87–92 (2022). https://doi.org/10.1038/s41586-022-04921-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04921-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing