Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammatory memory and tissue adaptation in sickness and in health

Abstract

Our body has a remarkable ability to remember its past encounters with allergens, pathogens, wounds and irritants, and to react more quickly to the next experience. This accentuated sensitivity also helps us to cope with new threats. Despite maintaining a state of readiness and broadened resistance to subsequent pathogens, memories can also be maladaptive, leading to chronic inflammatory disorders and cancers. With the ever-increasing emergence of new pathogens, allergens and pollutants in our world, the urgency to unravel the molecular underpinnings of these phenomena has risen to new heights. Here we reflect on how the field of inflammatory memory has evolved, since 2007, when researchers realized that non-specific memory is contained in the nucleus and propagated at the epigenetic level. We review the flurry of recent discoveries revealing that memory is not just a privilege of the immune system but also extends to epithelia of the skin, lung, intestine and pancreas, and to neurons. Although still unfolding, epigenetic memories of inflammation have now been linked to possible brain disorders such as Alzheimer disease, and to an elevated risk of cancer. In this Review, we consider the consequences—good and bad—of these epigenetic memories and their implications for human health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of inflammatory and tissue memory.
Fig. 2: Mechanisms of memory.

Similar content being viewed by others

References

  1. Durrant, W. E. & Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Pasco, S. T. & Anguita, J. Lessons from Bacillus Calmette–Guerin: harnessing trained immunity for vaccine development. Cells 9, 2109 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  3. Beeson, P. B. & Technical Assistance of Elizabeth Roberts. Tolerance to bacterial pyrogens: I. Factors influencing its development. J. Exp. Med. 86, 29–38 (1947).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. West, M. A. & Heagy, W. Endotoxin tolerance: a review. Crit. Care Med. 30, S64–S73 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Ekamper, P., van Poppel, F., Stein, A. D. & Lumey, L. H. Independent and additive association of prenatal famine exposure and intermediary life conditions with adult mortality between age 18–63 years. Soc. Sci. Med. 119, 232–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Farber, D. L., Netea, M. G., Radbruch, A., Rajewsky, K. & Zinkernagel, R. M. Immunological memory: lessons from the past and a look to the future. Nat. Rev. Immunol. 16, 124–128 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Muecksch, F. et al. Increased potency and breadth of SARS-CoV-2 neutralizing antibodies after a third mRNA vaccine dose. Preprint at bioRxiv https://doi.org/10.1101/2022.02.14.480394 (2022).

  8. Laidlaw, B. J. & Ellebedy, A. H. The germinal centre B cell response to SARS-CoV-2. Nat. Rev. Immunol. 22, 7–18 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Pulendran, B. & Davis, M. M. The science and medicine of human immunology. Science 369, eaay4014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cho, A. et al. Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination. Nature 600, 517–522 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017). This study is the first to report that inflammatory memory is not a property unique to immune cells and is also found in skin epithelial stem cells.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Foster, S. L., Hargreaves, D. C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007). This landmark study traces the roots of inflammatory memory and tolerence in marcophages to epigenetic changes in chromatin.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Netea, M. G., Quintin, J. & van der Meer, J. W. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Ordovas-Montanes, J. et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560, 649–654 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190.e19 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Lim, A. I. et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 373, eabf3002 (2021). This study identifies intergenerational memory in intestinal offspring epithelial stem cells following in utero esposure to inflammatory mediators.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018). This study identifies a role for innate immune memory in brain-resident microglia in exacerbating Alzheimer disease.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Divangahi, M. et al. Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nat. Immunol. 22, 2–6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen, F. et al. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat. Immunol. 15, 938–946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Freyne, B. et al. Neonatal BCG vaccination reduces interferon-gamma responsiveness to heterologous pathogens in infants from a randomized controlled trial. J. Infect. Dis. 221, 1999–2009 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yao, Y. et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell 175, 1634–1650.e17 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Serafini, N. et al. Trained ILC3 responses promote intestinal defense. Science 375, 859–863 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cirovic, B. et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe 28, 322–334.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moore, R. S., Kaletsky, R. & Murphy, C. T. Piwi/PRG-1 argonaute and TGF-beta mediate transgenerational learned pathogenic avoidance. Cell 177, 1827–1841.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klosin, A., Casas, E., Hidalgo-Carcedo, C., Vavouri, T. & Lehner, B. Transgenerational transmission of environmental information in C. elegans. Science 356, 316–319 (2017).

    Article  ADS  Google Scholar 

  30. Katzmarski, N. et al. Transmission of trained immunity and heterologous resistance to infections across generations. Nat. Immunol. 22, 1382–1390 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Kaufmann, E. et al. Lack of evidence for intergenerational inheritance of immune resistance to infections. Nat. Immunol. 23, 203–207 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Xing, Y. & Naik, S. Under pressure: stem cell–niche interactions coordinate tissue adaptation to inflammation. Curr. Opin. Cell Biol. 67, 64–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Biton, M. et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175, 1307–1320.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gonzales, K. A. U. et al. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. Science 374, eabh2444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Del Poggetto, E. et al. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science 373, eabj0486 (2021).

    Article  PubMed  Google Scholar 

  36. Niec, R. E., Rudensky, A. Y. & Fuchs, E. Inflammatory adaptation in barrier tissues. Cell 184, 3361–3375 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodgers, J. T. et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert. Nature 510, 393–396 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lau, C. M. et al. Epigenetic control of innate and adaptive immune memory. Nat. Immunol. 19, 963–972 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fanucchi, S. et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat. Genet. 51, 138–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Henikoff, S. & Shilatifard, A. Histone modification: cause or cog? Trends Genet. 27, 389–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Zaret, K. S. Pioneer transcription factors initiating gene network changes. Annu. Rev. Genet. 54, 367–385 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Laval, B. et al. C/EBPβ-dependent epigenetic memory induces trained immunity in hematopoietic stem cells. Cell Stem Cell 26, 657–674.e8 (2020).

    Article  PubMed  Google Scholar 

  43. Larsen, S. B. et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell 28, 1758–1774.e8 (2021). This study defines the transcription factor-depedent mechanisms underlying persistent chromatin modifications that mediate memory in epithelial stem cells.

    Article  CAS  PubMed  Google Scholar 

  44. Lowes, M. A., Bowcock, A. M. & Krueger, J. G. Pathogenesis and therapy of psoriasis. Nature 445, 866–873 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Suarez-Farinas, M., Fuentes-Duculan, J., Lowes, M. A. & Krueger, J. G. Resolved psoriasis lesions retain expression of a subset of disease-related genes. J. Invest. Dermatol. 131, 391–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Y. et al. Long-term culture captures injury-repair cycles of colonic stem cells. Cell 179, 1144–1159.e15 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rees, W. D. et al. An in vitro chronic damage model impairs inflammatory and regenerative responses in human colonoid monolayers. Cell Rep. 38, 110283 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Bryant, D. M. et al. Identification of regenerative roadblocks via repeat deployment of limb regeneration in axolotls. NPJ Regen. Med. 2, 30 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Maekawa, T. et al. ATF7 mediates TNF-alpha-induced telomere shortening. Nucleic Acids Res. 46, 4487–4504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, W., Qu, J., Liu, G. H. & Belmonte, J. C. I. The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol. 21, 137–150 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Jin-Gyu Cheong, A. R. et al. Epigenetic memory of COVID-19 in innate immune cells and their progenitors. Preprint at bioRxiv https://doi.org/10.1101/2022.02.09.479588 (2022).

  52. Li, X. et al. Maladaptive innate immune training of myelopoiesis links inflammatory comorbidities. Cell 185, 1709–1727.e18 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  54. Schafer, M. & Werner, S. Cancer as an overhealing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell Bio. 9, 628–638 (2008).

    Article  CAS  Google Scholar 

  55. Martins-Green, M., Boudreau, N. & Bissell, M. J. Inflammation is responsible for the development of wound-induced tumors in chickens infected with Rous sarcoma virus. Cancer Res. 54, 4334–4341 (1994).

    CAS  PubMed  Google Scholar 

  56. Sundaram, G. M., Quah, S. & Sampath, P. Cancer: the dark side of wound healing. FEBS J. 285, 4516–4534 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Guasch, G. et al. Loss of TGFβ signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell 12, 313–327 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Alonso-Curbelo, D. et al. A gene–environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koelwyn, G. J. et al. Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nat. Med. 26, 1452–1458 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Falvo, D. J. et al. A lineage-specific epigenetic memory of inflammation potentiates Kras-driven pancreatic tumorigenesis. Preprint at bioRxiv https://doi.org/10.1101/2021.11.01.466807 (2021).

  61. Geller, A. E. et al. The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nat. Commun. 13, 759 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pascual, G. et al. Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature 599, 485–490 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  65. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vuong, H. E. et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586, 281–286 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thion, M. S. et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172, 500–516.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Koren, T. et al. Insular cortex neurons encode and retrieve specific immune responses. Cell 184, 5902–5915.e17 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, W. T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer's disease. Cell 182, 976–991.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our many friends and colleagues who have made this field such an exciting and important one; A. Gola, M. Parigi, S. Larsen, C. Cowley, R. Niec, S. Sajjath, D. Rosenblum, P. Konieczny and L. Gueinin-Mace for their helpful comments on our manuscript. Illustrations were generated using Biorender. E.F. is an HHMI Investigator funded by grants from the US National Institutes of Health (R01-AR27883, R01-AR31737 and R01-AR050452). S.N. is a NYSCF Robertson Stem Cell Investigator and is funded by grants from the US National Institutes of Health (1DP2AR079173-01 and R01-AI168462), the Pew Foundation (00034119) and the Packard Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.N and E.F. conceptualized and compiled the manuscript and illustrations.

Corresponding authors

Correspondence to Shruti Naik or Elaine Fuchs.

Ethics declarations

Competing interests

S.N. is on the scientific advisory board of Seed Inc., is a consultant for BiomX and receives research funding from Takeda Pharmaceuticals. E.F. has recently served on the scientific advisory boards of L’Oreal and Arsenal Biosciences, and owns stock options for Arsenal Biosciences.

Peer review

Peer review information

Nature thanks Cedric Balnpain, Xing Dai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, S., Fuchs, E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 607, 249–255 (2022). https://doi.org/10.1038/s41586-022-04919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04919-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer