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            Abstract
Diffuse large BÂ cell lymphoma (DLBCL) is the most common B cell non-Hodgkin lymphoma and remains incurable in around 40% of patients. Efforts to sequence the coding genome identified several genes and pathways that are altered in this disease, including potential therapeutic targets1,2,3,4,5. However, the non-coding genome of DLBCL remains largely unexplored. Here we show that active super-enhancers are highly and specifically hypermutated in 92% of samples from individuals with DLBCL, display signatures of activation-induced cytidine deaminase activity, and are linked to genes that encode B cell developmental regulators and oncogenes. As evidence of oncogenic relevance, we show that the hypermutated super-enhancers linked to the BCL6, BCL2 and CXCR4 proto-oncogenes prevent the binding and transcriptional downregulation of the corresponding target gene by transcriptional repressors, including BLIMP1 (targeting BCL6) and the steroid receptor NR3C1 (targeting BCL2 and CXCR4). Genetic correction of selected mutations restored repressor DNA binding, downregulated target gene expression and led to the counter-selection of cells containing corrected alleles, indicating an oncogenic dependency on the super-enhancer mutations. This pervasive super-enhancer mutational mechanism reveals a major set of genetic lesions deregulating gene expression, which expands the involvement of known oncogenes in DLBCL pathogenesis and identifies new deregulated gene targets of therapeutic relevance.
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                    Fig. 1: SEs are hypermutated in DLBCL.[image: ]


Fig. 2: Recurrently mutated SEs are linked to known B cell oncogenes.[image: ]


Fig. 3: Hotspot mutations in the BCL6-iSE are required for survival and deregulate BCL6 expression.[image: ]


Fig. 4: Recurrent mutations in the BCL6-iSE prevent BLIMP1 binding and transcriptional repression.[image: ]


Fig. 5: Hotspot mutations in the BCL2-SE prevent NR3C1 binding and transcriptional regulation.[image: ]


Fig. 6: A mutational hotspot in the CXCR4-SE disrupts NR3C1 binding and transcriptional repression.[image: ]



                


                
                    
                        
        
            
                Similar content being viewed by others

                
                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        Targeting DCAF5 suppresses SMARCB1-mutant cancer by stabilizing SWI/SNF
                                        
                                    

                                    
                                        Article
                                        
                                         27 March 2024
                                    

                                

                                Sandi Radko-Juettner, Hong Yue, â€¦ Charles W. M. Roberts

                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        Gene-expression memory-based prediction of cell lineages from scRNA-seq datasets
                                        
                                    

                                    
                                        Article
                                         Open access
                                         29 March 2024
                                    

                                

                                A. S. Eisele, M. Tarbier, â€¦ D. M. Suter

                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        Evolutionary trajectories of small cell lung cancer under therapy
                                        
                                    

                                    
                                        Article
                                         Open access
                                         13 March 2024
                                    

                                

                                Julie George, Lukas Maas, â€¦ Roman K. Thomas

                            
                        

                    
                

            
        
            
        
    
                    
                
            

            
                Data availability

              
              Raw WGS data from 20 cases of primary DLBCL and 21 DLBCL cell lines were deposited in the dbGaP database under accession number phs000328.v3.p1. H3K27Ac ChIPâ€“seq data from the 29 cell lines were deposited at the GEO database under accession number GSE182214. Other datasets used in this analysis were downloaded from the European Genomeâ€“Phenome Archive (EGAD00001004142, EGAD00001006087 and EGAD00001003783)10,34; dbGaP (phs000235.v14.p2 and phs000527.v3.p1); the NCBI (SRP020237); the GEO (GSE89688 (H3K27Ac data of normal GC B cells) and GSE69558 (H3K27Ac data of primary lymphoma cases)); and the ICGC Xena portal (https://xenabrowser.net/datapages/?hub=https://pcawg.xenahubs.net:443)83.Â Source data are provided with this paper.
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Extended data figures and tables

Extended Data Fig. 1 Experimental strategy used for the identification of mutated E/SEs in DLBCL.
H3K27Ac ChIPâ€“seq data were generated in duplicate from 29 cell lines and 2 independent pools of human GC B cells, and used for the identification of active E/SEs based on the ROSE algorithm. The resulting list of E/SEs was intersected with the list of SNVs identified by WGS analysis in the same cell lines (matching each cell line to its own E/SEs) or in a panel of 93 de novo DLBCLs with matched normal DNA (Discovery Panel), to identify recurrently mutated E/SEs. An independent panel of 150 primary cases with WGS data and 169 primary cases with targeted-sanger sequencing data (Extension Panel) was then used to confirm the recurrent targeting of specific mutational hotspots identified in the BCL6-iSE, the BCL2-SE, and the CXCR4-SE.


Extended Data Fig. 2 E/SEs identified by ROSE are enriched in H3K4me1 and recapitulate the E/SE landscape of primary large B cell lymphomas.
a. Heatmaps of the indicated histone mark signal at SEs, Es, and Promoter regions, defined as described in Methods. Shown are the 50â€‰kb regions upstream and downstream of the H3K27Ac peak centre, set as 0. The colour scale indicates the normalized z score. Data are shown for GC B cells and include all â€œsharedâ€� E/SEs found significantly hypermutated in DLBCL (Fig. 1b, d) as well as promoter regions. b. ChIPâ€“seq density profiles of H3K4me1, H3K4me3, H3K27Ac and H3K27me3 at SEs, Es, and Promoter regions. The plots indicate normalized mean ChIPâ€“seq density, relative to the H3K27Ac peak summit, set as 0. For the SEs, data are provided overall (top left) and separately for intragenic SEs, intergenic SEs, and the set of recurrently hypermutated â€œsharedâ€� SEs presented in Supplementary Table 2 (HyperMÂ SE)(bottom). c. Left panel: number of H3K27Ac peaks nominated as SEs in the GC B cell pool CB4 (nâ€‰=â€‰655) and also assigned to SEs (dark red) or classic Es (light red) in primary large B cell lymphoma cases. Data are provided separately for each of the 7 samples, and GC SEs not decorated by H3K27Ac in the primary samples are coloured in grey. The reverse analysis is shown in the right panel, as the relative percentage of DLBCL-specific active SEs also found in normal GC B cells (dark red if active SEs, light red if typical Es) or not decorated by H3K27Ac in normal GC B cells (grey shade, representing â€˜de novoâ€™ SEs).


Extended Data Fig. 3 Histone modification pattern of representative intragenic and TSS-distal SEs targeted by mutations in DLBCL.
a. ChIPâ€“seq tracks of H3K4me3, H3K4me1, H3K27Ac, and H3K27me3 at representative intragenic SHM-targeted SEs in normal GC B cells vs. primary B cell lymphomas. Enrichment is visualized as reads per bins per million bps (BPM), and the genomic coordinates of the region shown (hg19) are provided at the bottom, with the annotated coding gene/s (RefSeq accession No: NM_001706 for BCL6, NM_000633 for BCL2, NM_003467 for CXCR4, and NM_016734 for PAX5). Green horizontal bars below the H3K27Ac tracks indicate regions identified as SEs by ROSE. The dotted square indicates the hypermutated region. In the bottom panel, distribution andÂ number of mutations identified in cases of primary DLBCL. b. ChIPâ€“seq tracks of H3K4me3, H3K4me1, H3K27Ac, and H3K27me3 at representative TSS-distal, SHM-targeted SEs in normal GC B cells. H3K27Ac is also shown for the DLBCL cell line LY1. Enrichment is visualized as reads per bins per million bps (BPM), and green horizontal bars below the H3K27Ac tracks indicate regions identified as SEs by ROSE. The cartoon on top provides a broader view of the genomic region expanded below (dotted lines), with annotated coding genes represented as solid boxes, intergenic regions represented as lines, and their promoter orientation indicated as an arrow (not in scale). The exact genomic coordinates (hg19) of the region magnified are provided at the bottom, and the distribution of somatic mutations found across the region in DLBCL (cell lines and primary cases) is plotted below the gene/s track.


Extended Data Fig. 4 Transcriptional activity at active E/SEs targeted by SHM.
a. Distribution of transcripts per million (TPM) values for hypermutated, not hypermutated, and inactive E/SEs identified in the 29 DLBCL cell lines. b. Distribution of TPM values for sense and antisense transcripts at the indicated chromatin domains, documenting divergent transcription (legend as in panelÂ a). c. H3K27Ac ChIPâ€“seq track (green) and RNA-seq tracks (red, antisense transcription; blue, sense transcription) at 4 representative loci targeted by SE-SHM. Green bar denotes the SEs identified by ROSE. BPM, bins per million (seeÂ methods). In panels a and b, pairwise comparisons between TPM values were significantly different across all categories and are thus not indicated (adjusted pâ€‰<â€‰0.05; Wilcoxon rank-sum test with BH correction).


Extended Data Fig. 5 Mutations are enriched at intragenic SEs encompassing H3K4me3+ promoters.
a. Overall mutation frequency (left panel) and percentage of hypermutated E/SEs (right panel; seeÂ Methods and Fig. 1b for definition) in 29 DLBCL cell lines. Data are provided separately for E/SEs encompassing promoters (i.e. overlapping with H3K4me3+) and devoid of promoters (i.e. not overlapping with H3K4me3+ regions and TSS-distal). Each dot represents one cell line, and mutation frequencies are expressed as fold changes vs. the background mutation frequency of the same cell line, set as 1 (dotted line). A horizontal red bar defines the mean across all 29 cell lines.b. Overall mutation frequency (left panel) and percentage of hypermutated active promoters (H3K27Ac+ H3K4me3+ regions) in 29 DLBCL cell lines. Data are provided separately for promoters embedded in SEs, promoters embedded in Es, and classical active promoters not embedded in E/SEs. Each dot represents one cell line, and the mutation frequencies are expressed as fold changes vs. the background mutation frequency of the same cell line, set as 1 (dotted line). A horizontal red bar defines the mean across all 29 cell lines. c. Overall mutation frequency (left panel) and percentage of hypermutated core E/SEs (right panel; see Methods andÂ Fig. 1d for definition) in 93 primary DLBCL biopsies. Data are provided separately for E/SEs encompassing promoters and E/SEs devoid of promoters (defined as in a). Each dot represents one sample, and mutation frequencies are expressed as fold changes vs. the background mutation frequency of the same sample, set as 1 (dotted line). A horizontal red bar defines the mean across all 93 DLBCL samples. Note that these frequencies represent an underestimate of the actual mutation frequencies as, in the absence of sample-specific H3K27Ac data, the region interrogated represents the union of the core E/SEs found in all 29 cell lines. d. Overall mutation frequency (left panel) and percentage of hypermutated active promoters (H3K27Ac+ H3K4me3+ regions) in 93 cases of primary DLBCL. Data are provided separately for promoters embedded in SEs, promoters embedded in Es, and classical active promoters not embedded in E/SEs. Each dot represents one DLBCL biopsy, and mutation frequencies are expressed as fold changes vs. the background mutation frequency of the same sample, set as 1 (dotted line). A horizontal red bar defines the mean across all 93 DLBCL biopsies. All p-values were calculated by two-sided Wilcoxon rank-sum test after BH correction.
Source data


Extended Data Fig. 6 Mutation frequency and percentage of hypermutated E/SEs in cases of primary DLBCL.
a. Venn diagrams showing the overlap between E/SEs identified in normal GC B cells, GCB-DLBCL cell lines and ABC-DLBCL cell lines. The shadowed area marks the subset of E/SEs interrogated in each of the analyses shown in panels b and c (same row), and the corresponding number is given for each subset inside the diagram. The total number of E/SEs identified in GC B cells, GCB-DLBCL cell lines and ABC-DLBCL cell lines appears outside the Venn diagram, in brackets. b, c. Sample-based mutation frequency (b) and percentage (c) of hypermutated E/SEs in primary DLBCL specimens grouped based on phenotypic subtypes (UNC, unclassified; ND, not determined). The analysis of different regions (corresponding to those highlighted in the aligned Venn diagram) is displayed in different rows, and data for â€œsharedâ€� E/SEs (Fig. 1d, e) are shown for comparison on the top row, as these regions emerged as harbouring the highest mutation frequency and % of hypermutated cases in DLBCL. In the graphs, each dot denotes one primary DLBCL sample, and mutation frequencies are expressed as fold changes vs. background, calculated in the same sample as described in Methods. The grey dashed line in panel b represents the background mutation frequency, set at 1 for each sample (seeÂ Methods). All p-values were calculated by two-sided Wilcoxon rank-sum test after BH correction.
Source data


Extended Data Fig. 7 Mutation frequency and percentage of hypermutated E/SEs in BL and CLL.
a. Venn diagrams showing the overlap between E/SEs identified in normal GC B cells, GCB-DLBCL cell lines and ABC-DLBCL cell lines. The shadowed area marks the subset of E/SEs interrogated in each of the analyses shown in panels b and c (same row), and the corresponding number is given for each subset inside the diagram. The total number of E/SEs identified in GC B cells, GCB-DLBCL cell lines and ABC-DLBCL cell lines appears outside the Venn diagram, in brackets. b, c. Sample-based mutation frequency (b) and percentage (c) of hypermutated E/SEs in primary BL and CLL specimens grouped based on molecular subtypes (IGHV-unmutated: CLL-UM; IGHV-mutated: CLL-M). The analysis of different regions (corresponding to those highlighted in the aligned Venn diagram) is displayed in different rows. In the graphs, each dot denotes one primary biopsy, and mutation frequencies are expressed as fold changes vs. background, calculated in the same sample as described in Methods. The grey dashed line in panel b represents the background mutation frequency, set at 1 for each sample (seeÂ Methods). All p-values were calculated by two-sided Wilcoxon rank-sum test after BH correction. Note that 82% of hypermutatedÂ SEs in CLL map to the IG loci.
Source data


Extended Data Fig. 8 FishHook independently identifies E/SEs as recurrent mutational targets in DLBCL.
a. Significantly mutated regions (1â€‰kb) identified by FishHook in WGS data from the 93 DLBCL Discovery cases. The dotted line denotes the q-value at 10âˆ’6. Asterisks indicate peaks overlapping with hypermutated SEs identified by the integrated ChIPâ€“seq-based approach presented in Extended Data Fig. 1 (see also Methods). b. The percentage of cases of primary DLBCL hypermutated across the 3,775 SEs identified. c. Overlap of significantly mutated 1â€‰kb-regions called by FishHook (nâ€‰=â€‰164) with the union list of active SEs identified by ChIPâ€“seq; data are shown for all SEs (nâ€‰=â€‰3,775, diagram on the far-left side) or for SEs hypermutated in at least 2 cases (nâ€‰=â€‰159, third diagram from the left). In a separate analysis, contiguous 1â€‰kb FishHook regions falling within the same SE were stitched into loci, and the overlap between these loci (nâ€‰=â€‰66) and the union list of active SEs is provided on the second and fourth diagrams.


Extended Data Fig. 9 SE-associated mutational signatures display features of AID activity.
a. Cosine similarity of the three de novo mutational signatures identified in SEs (Fig. 1f) to the COSMIC signatures database. Blue slices in the pie reflect the degree of similarity with the COSMIC SBS signature listed to the left. Signatures with the highest similarity are highlighted in red (SBS9, non-canonical AID [ncAID]; SBS40, ageing; SBS84, AID). b. Cumulative activity of the three signatures at SEs, Es and the rest of the genome (WG) across the 93 cases of DLBCL, overall (left panels) and separately for GCB- and ABC-DLBCL (right panels). c,d. Mutation frequency of WRCY and non-WRCY motifs in E/SEs, as compared to random regions of equivalent size selected from the â€œrest of the genomeâ€�; data are shown for primary DLBCL biopsies (c) and cell lines (d). All p-values were calculated by two-sided Wilcoxon rank-sum test after BH correction.
Source data


Extended Data Fig. 10 Percentage of cases carrying mutations in the BCL6-BLIMP1-BS, BCL2-NR3C1-BS, and CXCR4-NR3C1-BS across lymphoid and non-lymphoid cancers.
Percentage of cases carrying mutations in the BCL6-, BCL2-, and CXCR4- SE hotspots characterized in Figs. 4â€“6 across an independent panel of GC-derived lymphomas (DLBCL, FL, BL, and IGHV-mutated-CLL), non-GC derived lymphomas (IGHV-unmutated-CLL), and other cancer types from the ICGC pan-cancer project. In further support of the selective pressure for mutating these sequences, 15â€‰bp domains located between 0.5â€‰kb and 3â€‰kb from the BS, within the same SE (BS-distal) were randomly selected with 100 permutations, and the percentage of mutated cases in these regions was calculated (grey bars; mean of 100 permutations). Particularly relevant is the lack of hotspot mutations in M-CLL (which have transited through the GC and therefore represent specific surrogates of normal GC alleles).


Extended Data Fig. 11 Mutations in the BCL6-B1BS are enriched in GCB- and ST2-DLBCL.
a. Immunoblot analysis of BCL6 protein expression in isogenic clones obtained from HLY1, LY18 and Karpas-422 after CRISPR-Cas9-mediated correction of specific mutations in the BCL6-iSE hotspot or after introduction of mutations in the control neutral region (nâ€‰=â€‰4 clones/sgRNA; related to Fig. 3c, d). Î±-Tubulin, loading control. Shown is one representative experiment out of two that gave similar results (for gel source data, see Supplementary Figure 1). On the right panel, quantification of BCL6 expression, as assessed by densitometry after normalization for loading control (two-tailed unpaired t-test). b. Sequencing traces of BCL6 PCR amplicons encompassing cell-line specific heterozygous SNPs segregating with the mutant allele, obtained from the 8 clones shown in a. A schematic showing the allelic distribution of the BCL6 SNP, relative to the somatic mutation corrected in each cell line, is provided on the top. Amplicons were generated from DNA (one representative clone shown) and cDNA (nâ€‰=â€‰4 clones/sgRNA). c,d. Immunoblot analysis of BLIMP1, BCL6 and HDAC1 expression in HLY1 (c) and LY18 (d) clones. In LY18, experiments were performed in basal conditions (UT) or upon CD40L stimulation. SUDHL4 is used as negative control for BLIMP1 and positive control for BCL6 expression. * non-specific band (for gel source data, see Supplementary Figure 1). e. Overlap between cases harbouring mutations in the BCL6-BLIMP1 binding site (B1BS), BCL6 translocations (Tx), and/or coding mutations in the PRDM1 gene. Data are from 391 cases of primary DLBCL analysed by WGS or Sanger sequencing. f. BCL6 expression levels in cases of primary DLBCL stratified based on the genetic lesions indicated in e (nâ€‰=â€‰181 cases with matched WGS and RNA-seq data). Significant differences were calculated by one-way ANOVA with Bonferroni correction. g. Relative distribution of cases harbouring the indicated genetic lesions in various DLBCL COO subtypes (two-tailed Fisherâ€™s exact test). The total number of cases analysed within each subtype is provided on the x-axis label, and the number of mutated cases is shown on the top. h. Mutation harbouring the indicated genetic lesions in different LymphGen classes. The total number of cases analysed is provided on the x-axis label, and the number of mutated cases is shown on the top. A two-tailed Fisherâ€™s exact test was used to determine whether cases carrying the indicated genetic alteration were significantly enriched in a specific LymphGen class versus all other classes combined. Of note, although mutations in BCL6-B1BS can be found at some frequencies in all COO and LymphGen subroups, they were preferentially enriched in the GCB- and ST2 subgroups.
Source data


Extended Data Fig. 12 Mutations in the BCL6-B1BS influence DLBCL class assignment.
a. Oncoplot of 223 cases of DLBCL classified into distinct genetic subtypes according to the LymphGen algorithm. Columns represent different cases of DLBCL and rows correspond to genetic alterations used by the LymphGen algorithm, with their overall percentage shown on the left. Colour coded keys below the plot indicate mutation type, presence/absence of BCL2 and BCL6 structural variants (SVs), presence/absence of mutations at the BCL2-NR3C1-, BCL6-BLIMP1-, and CXCR4-NR3C1-BS, and LymphGen class assignment, as obtained by running the algorithm without considering the BS mutations (LymphGen Original) or considering the BS mutations (LymphGen with BS mutations). b. Head-to-head comparison between LymphGen class assignments obtained as described in a. The results show 6 cases that changed class when including BS mutations, of which one was originally unclassified and became BN2 (purple), and 5 were originally classified and became â€œotherâ€� because they showed 0.5â€‰<â€‰P(class)â€‰<â€‰0.9 for multiple classes.


Extended Data Fig. 13 NR3C1 binding is abrogated by specific BCL2-SE mutations in the LY10 cell line.
a. NR3C1 ChIPâ€“qPCR in wild-type (TMD8, top) and mutant (LY10, bottom) DLBCL cell lines, using primers encompassing the BCL2-SE hotspot, the known NR3C1 target NFKBIA, and a control non-target region (mean +/âˆ’ SD; nâ€‰=â€‰3 technical replicates from one representative experiment out of 2 that gave analogous results; one-way ANOVA with Bonferroni correction). Data are expressed as % of input normalized on control IgG IP. b. Schematic of the BCL2 locus, with the hypermutated SE shown in red, and the primers used in the NR3C1-ChIPâ€“PCR approximately positioned below the map. c. Gel electrophoresis of NR3C1 ChIPâ€“PCR amplicons from the LY10 cell line, as compared to input and control IgG ChIP (data shown are from one representative experiment out of 2 independent experiments that gave analogous results). Band quantification was obtained by densitometry and the relative values are provided below the image, with input set as 1. d. Sequencing analysis of the PCR products shown in c. On the top panel, the reference BCL2 genomic sequence (NM_000624) and the sequence of the three BCL2 alleles (LY10 carries a trisomy 18) are aligned to the predicted NR3C1 binding motif. Sequencing traces of the ChIPâ€“PCR amplicons document that only the wild-type â€œGâ€� mutant allele is efficiently immunoprecipitated, as compared to the input, documenting abrogation of NR3C1 binding by the two mutations (Sanger sequencing performed with the reverse primer). e. Relative BCL2 expression changes in isogenic clones from the indicated cell lines, colour coded as in FigÂ 5f (nâ€‰=â€‰4 each except for LY10, where only 2 corrected clones were recovered, and control neutral clones, were 8 were used to exclude biological variability). For each cell line, the mean value of the unmanipulated clones is arbitrarily set as 1 (two-tailed unpaired t-test). f. Absolute BCL2 mRNA levels in the 3 cell lines used in CRISPR-Cas9 experiments, measured by RNA-seq (LY10, mutated; BJAB and SUDHL5, unmutated). g. Overlap between cases of DLBCL with mutations in the BCL2-NR3C1-BS, BCL2 translocations (Tx), and/or coding mutations in the NR3C1 gene. Data are from 328 cases analysed by WGS or Sanger sequencing. h. BCL2 expression levels in cases of primary DLBCL, stratified based on the presence of the indicated genetic lesions (nâ€‰=â€‰181 cases with available WGS and RNA-seq data). Data are expressed as TPM, and statistically significant differences were calculated by one-way ANOVA with Bonferroni correction. i. Relative distribution of cases harbouring the indicated genetic lesions in various DLBCL COO subtypes. P-values were calculated by two-tailed Fisherâ€™s exact test to determine specific enrichment of a genetic lesion in each COO group versus the other groups combined (UNCâ€‰<â€‰unclassified; ND, not determined). The total number of cases analysed within each subtype is provided in brackets, and the number of mutated cases is shown on the top. j. Relative distribution of cases harbouring the indicated genetic lesions in LymphGen genetic classes. A two-tailed Fisherâ€™s exact test was used to calculate the enrichment of each genetic lesion in each LymphGen class versus the other classes combined. The total number of cases analysed within each class is provided in brackets, and the number of mutated cases is shown on the top.
Source data


Extended Data Fig. 14 NR3C1 binding to the CXCR4-SE is abrogated by somatic mutations.
a. NR3C1 ChIPâ€“qPCR of the region encompassing the CXCR4-SE mutational hotspot or the NFKBIA control region and a negative control region in the WT SUDHL16 cell line (mean +/âˆ’ SD; nâ€‰=â€‰4 technical replicates, from one representative experiment out of 2 independent experiments that gave analogous results, one-way ANOVA with Bonferroni correction). Data are expressed as fold enrichment vs. control IgG IP. b. NR3C1 ChIPâ€“qPCR (left) and allelic quantification in the mutant (right) HLY1 cell line (mean +/âˆ’ SD; nâ€‰=â€‰3 technical replicates, from one representative of 2 independent experiments, one-way ANOVA with Bonferroni correction and two-tailed Fisherâ€™s exact test). c. Simplified schematic of the CXCR4 locus; the recurrently hypermutated SE is shown in red, and the primers used for NR3C1-ChIP are approximately positioned below the map. d. Gel electrophoresis of NR3C1 ChIPâ€“PCR amplicons from the indicted cell lines, as compared to input and control IgG ChIP. Band quantification was obtained by densitometry and the relative values are provided below the image, with input set as 1 (data shown are representative of 2 independent experiments). e. Sequencing analysis of the PCR products shown in d. On the top panel, the reference CXCR4 genomic sequence (NM_003467) and the sequence of the mutated allele are aligned to the predicted NR3C1 binding motif (reverse strand). Sequencing traces of ChIPâ€“PCR amplicons document reduced signal for the mutant allele, as compared to the input (arrow), indicating abrogation of NR3C1 binding by the mutations. f. Sequencing traces of DNA and cDNA amplicons obtained from the same clones shown in e. Arrows indicate the mutated position. g. Relative changes in CXCR4 expression between unedited and CXCR4-corrected isogenic clones (nâ€‰=â€‰8 each for HLY,1 and nâ€‰=â€‰6 each for BJAB), colour coded as in Fig. 6e. For each cell line, the mean value of unedited clones is set as 1 (two-tailed unpaired t-test). h. CXCR4 allelic expression in clones surviving correction of the CXCR4-SE mutation. Top: Schematic diagram of the wild-type (WT) and mutant (M) CXCR4 alleles in the HLY1 cell line, carrying the A413G nucleotide substitution. Additional SNVs segregating with the two alleles and used to track allele-specific expression are also indicated, in red. The nucleotide sequence of the two alleles with the predicted NR3C1 binding motif, is shown below the diagram and is aligned to the sequencing tracks (reverse strand) of representative DNA and cDNA amplicons obtained from isogenic HLY1 clones (control, clones edited in the neutral genomic region; corrected, clones corrected in the 413 position within the CXCR4-SE). Arrow points to the mutated/corrected nucleotide. i. Relative distribution of genetic lesions affecting the CXCR4:NR3C1 axis in DLBCL. Overlap between cases of DLBCL with mutations in the CXCR4-NR3C1 binding site (red) and/or in the NR3C1 coding exons (blue). Data are from 315 cases analysed by WGS or Sanger sequencing. j. CXCR4 expression levels in cases of primary DLBCL with WT vs. mutated CXCR4-SE sequences (nâ€‰=â€‰181 cases with available WGS and RNA-seq data). Data are expressed as TPM. k. Percentage of cases harbouring CXCR4-SE mutations in DLBCL COO subtypes. The total number of cases analysed within each subtype is provided in brackets, and the number of mutated cases is shown on the top. l. Percentage of cases harbouring CXCR4-SE mutations in different LymphGen genetic classes. P-values were calculated by two-tailed Fisherâ€™s exact test for enrichment of a genetic lesion in a specific LymphGen class versus the other classes combined. The total number of cases analysed within each class is provided in brackets, and the number of mutated cases is shown on the top. Data indicate a significant enrichment in the BN2 subtype (two-tailed Fisherâ€™s exact test).
Source data





Supplementary information
Supplementary Figure 1
Original source images for western blots and gels.


Reporting Summary

Supplementary Table 1
Mutation analysis of active E/SEs identified in DLBCL cell lines.


Supplementary Table 2
List of E/SE regions found hypermutated in DLBCL cell lines and primary cases.


Supplementary Table 3
Significantly mutated 1â€‰kb regions identified by FishHook.


Supplementary Table 4
Genetic lesions targeting the BCL6â€“PRDM1, BCL2â€“NR3C1 and CXCR4â€“NR3C1 axis in the DLBCL discovery and extension panels.


Supplementary Table 5
Mutation analysis of the BCL6â€“BLIMP1-BS, BCL2â€“NR3C1-BS, and CXCR4â€“NR3C1-BS across lymphoid and non-lymphoid cancers.


Supplementary Table 6
List of oligonucleotides used in the study.





Source data
Source Data Fig. 1

Source Data Fig. 2

Source Data Fig. 3

Source Data Fig. 4

Source Data Fig. 5

Source Data Fig. 6

Source Data Extended Data Fig. 5

Source Data Extended Data Fig. 6

Source Data Extended Data Fig. 7

Source Data Extended Data Fig. 9

Source Data Extended Data Fig. 11

Source Data Extended Data Fig. 13

Source Data Extended Data Fig. 14




Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions


About this article
[image: Check for updates. Verify currency and authenticity via CrossMark]       



Cite this article
Bal, E., Kumar, R., Hadigol, M. et al. Super-enhancer hypermutation alters oncogene expression in B cell lymphoma.
                    Nature 607, 808â€“815 (2022). https://doi.org/10.1038/s41586-022-04906-8
Download citation
	Received: 13 August 2021

	Accepted: 25 May 2022

	Published: 06 July 2022

	Issue Date: 28 July 2022

	DOI: https://doi.org/10.1038/s41586-022-04906-8


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        








            


            
        
            
                This article is cited by

                
                    	
                            
                                
                                    
                                        Non-IG::MYC in diffuse large B-cell lymphoma confers variable genomic configurations and MYC transactivation potential
                                    
                                

                            
                                
                                    	Chunye Zhang
	Ellen Stelloo
	Ming-Qing Du


                                
                                Leukemia (2024)

                            
	
                            
                                
                                    
                                        Cis-regulatory atlas of primary human CD4+â€‰T cells
                                    
                                

                            
                                
                                    	Kurtis Stefan
	Artem Barski


                                
                                BMC Genomics (2023)

                            
	
                            
                                
                                    
                                        Landscape of enhancer disruption and functional screen in melanoma cells
                                    
                                

                            
                                
                                    	Zhao Wang
	Menghan Luo
	Mulin Jun Li


                                
                                Genome Biology (2023)

                            
	
                            
                                
                                    
                                        Etiology of super-enhancer reprogramming and activation in cancer
                                    
                                

                            
                                
                                    	Royce W. Zhou
	Ramon E. Parsons


                                
                                Epigenetics & Chromatin (2023)

                            
	
                            
                                
                                    
                                        SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities
                                    
                                

                            
                                
                                    	Alvaro Andrades
	Paola Peinado
	Pedro P. Medina


                                
                                Molecular Cancer (2023)

                            


                

            

        
    

            
                Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.



                
                    
                    

                

            
        





    
        

        
            
                

    
        
            
                
                Access through your institution
            
        

        
            
                
                    Buy or subscribe
                
            

        
    



            

            
                

    
        
        

        
        
            
                
                Access through your institution
            
        

        
            
                Change institution
            
        

        
        
            
                Buy or subscribe
            
        

        
    



            

        
    


    
        
    

    
    

    
        
            
                
                    
                        
                            Advertisement

                            
    
        
            
                [image: Advertisement]
        

    


                        

                    

                

            

            

            

        

    






    
        
            
                Explore content

                	
                                
                                    Research articles
                                
                            
	
                                
                                    News
                                
                            
	
                                
                                    Opinion
                                
                            
	
                                
                                    Research Analysis
                                
                            
	
                                
                                    Careers
                                
                            
	
                                
                                    Books & Culture
                                
                            
	
                                
                                    Podcasts
                                
                            
	
                                
                                    Videos
                                
                            
	
                                
                                    Current issue
                                
                            
	
                                
                                    Browse issues
                                
                            
	
                                
                                    Collections
                                
                            
	
                                
                                    Subjects
                                
                            


                	
                            Follow us on Facebook
                            
                        
	
                            Follow us on Twitter
                            
                        
	
                            
                                Subscribe
                            
                        
	
                            Sign up for alerts
                            
                        
	
                            
                                RSS feed
                            
                        


            

        
    
    
        
            
                
                    About the journal

                    	
                                
                                    Journal Staff
                                
                            
	
                                
                                    About the Editors
                                
                            
	
                                
                                    Journal Information
                                
                            
	
                                
                                    Our publishing models
                                
                            
	
                                
                                    Editorial Values Statement
                                
                            
	
                                
                                    Journal Metrics
                                
                            
	
                                
                                    Awards
                                
                            
	
                                
                                    Contact
                                
                            
	
                                
                                    Editorial policies
                                
                            
	
                                
                                    History of Nature
                                
                            
	
                                
                                    Send a news tip
                                
                            


                

            
        

        
            
                
                    Publish with us

                    	
                                
                                    For Authors
                                
                            
	
                                
                                    For Referees
                                
                            
	
                                
                                    Language editing services
                                
                            
	
                                Submit manuscript
                                
                            


                

            
        
    



    
        Search

        
            Search articles by subject, keyword or author
            
                
                    
                

                
                    
                        Show results from
                        All journals
This journal


                    

                    
                        Search
                    

                


            

        


        
            
                Advanced search
            
        


        Quick links

        	Explore articles by subject
	Find a job
	Guide to authors
	Editorial policies


    





        
    
        
            

            
                
                    Nature (Nature)
                
                
    
    
        ISSN 1476-4687 (online)
    
    


                
    
    
        ISSN 0028-0836 (print)
    
    

            

        

    




    
        
    nature.com sitemap

    
        
            
                About Nature Portfolio

                	About us
	Press releases
	Press office
	Contact us


            


            
                Discover content

                	Journals A-Z
	Articles by subject
	Protocol Exchange
	Nature Index


            


            
                Publishing policies

                	Nature portfolio policies
	Open access


            


            
                Author & Researcher services

                	Reprints & permissions
	Research data
	Language editing
	Scientific editing
	Nature Masterclasses
	Research Solutions


            


            
                Libraries & institutions

                	Librarian service & tools
	Librarian portal
	Open research
	Recommend to library


            


            
                Advertising & partnerships

                	Advertising
	Partnerships & Services
	Media kits
                    
	Branded
                        content


            


            
                Professional development

                	Nature Careers
	Nature 
                        Conferences


            


            
                Regional websites

                	Nature Africa
	Nature China
	Nature India
	Nature Italy
	Nature Japan
	Nature Korea
	Nature Middle East


            


        

    

    
        	Privacy
                Policy
	Use
                of cookies
	
                Your privacy choices/Manage cookies
                
            
	Legal
                notice
	Accessibility
                statement
	Terms & Conditions
	Your US state privacy rights


    





        
    
        [image: Springer Nature]
    
    © 2024 Springer Nature Limited




    

    
    
    







    

    



    
    

        

    
        
            


Close
    



        

            
                
                    [image: Nature Briefing: Cancer]
                    Sign up for the Nature Briefing: Cancer newsletter â€” what matters in cancer research, free to your inbox weekly.

                

                
                    
                        
                        

                        
                        
                        
                        

                        Email address

                        
                            
                            
                            
                            Sign up
                        


                        
                            
                            I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.
                        

                    

                

            


        


    

    
    

        

    
        
            

Close
    



        
            Get what matters in cancer research, free to your inbox weekly.
            Sign up for Nature Briefing: Cancer
            
        


    









    [image: ]







[image: ]
