Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Postcranial evidence of late Miocene hominin bipedalism in Chad


Bipedal locomotion is one of the key adaptations that define the hominin clade. Evidence of bipedalism is known from postcranial remains of late Miocene hominins as early as 6 million years ago (Ma) in eastern Africa1,2,3,4. Bipedality of Sahelanthropus tchadensis was hitherto inferred about 7 Ma in central Africa (Chad) based on cranial evidence5,6,7. Here we present postcranial evidence of the locomotor behaviour of S.tchadensis, with new insights into bipedalism at the early stage of hominin evolutionary history. The original material was discovered at locality TM 266 of the Toros-Ménalla fossiliferous area and consists of one left femur and two, right and left, ulnae. The morphology of the femur is most parsimonious with habitual bipedality, and the ulnae preserve evidence of substantial arboreal behaviour. Taken together, these findings suggest that hominins were already bipeds at around 7 Ma but also suggest that arboreal clambering was probably a significant part of their locomotor repertoire.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The femur of S. tchadensis.
Fig. 2: Comparative analysis of the subtrochanteric and midshaft cross-sectional contours of the TM 266 femur.
Fig. 3: Comparison of cortical thickness distributions between S.tchadensis and extant great apes.
Fig. 4: Ulnar remains of S.tchadensis.

Data availability

The postcranial material from Chad is curated and conserved by the CNRD in Chad. Access to the palaeontological material collected by the MPFT is regulated by formal agreement between the Université de N’Djamena, the CNRD and the Université de Poitiers and is available for study upon approval from Chad authorities. Access to the material for loan and/or study of the material, including original 3D microtomographic data, is available upon request to the CNRD, service de paléontologie, at Data supporting the findings of this study are available within the paper and its supplementary information files.


  1. Senut, B. et al. First hominid from the Miocene (Lukeino formation, Kenya). C. R. Acad. Sci. Paris IIA 332, 137–144 (2001).

    Google Scholar 

  2. Pickford, M., Senut, B., Gommery, D. & Treil, J. Bipedalism in Orrorin tugenensis revealed by its femora. C. R. Palevol. 1, 191–203 (2002).

    Article  Google Scholar 

  3. Almécija, S. et al. The femur of Orrorin tugenensis exhibits morphometric affinities with both Miocene apes and later hominins. Nat. Commun. 4, 2888 (2013).

    Article  ADS  PubMed  Google Scholar 

  4. Richmond, B. G. & Jungers, W. L. Orrorin tugenensis femoral morphology and the evolution of hominin bipedalism. Science 319, 1662–1665 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Brunet, M. et al. A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418, 145–151 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Zollikofer, C. P. et al. Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature 434, 755–759 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Lebatard, A. E. et al. Cosmogenic nuclide dating of Sahelanthropus tchadensis and Australopithecus bahrelghazali: Mio-Pliocene hominids from Chad. Proc. Natl Acad. Sci. USA 105, 3226–3231 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brunet, M. et al. New material of the earliest hominid from the Upper Miocene of Chad. Nature 434, 752–755 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Vignaud, P. et al. Geology and palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad. Nature 418, 152–155 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Heaton, J. L. et al. The long limb bones of the StW 573 Australopithecus skeleton from Sterkfontein Member 2: descriptions and proportions. J. Hum. Evol. 133, 167–197 (2019).

    Article  PubMed  Google Scholar 

  11. Ruff, C. B. Biomechanics of the hip and birth in early Homo. Am. J. Phys. Anthrop. 98, 527–574 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Böhme, M. et al. A new Miocene ape and locomotion in the ancestor of great apes and humans. Nature 575, 489–493 (2019).

    Article  ADS  PubMed  Google Scholar 

  13. Williams, S. A. et al. Reevaluating bipedalism in Danuvius. Nature 586, E1–E3 (2020).

    Article  ADS  Google Scholar 

  14. Pina, M. Unravelling the Positional Behaviour of Fossil Hominoids Morphofunctional and Structural Analysis of the Primate Hindlimb. PhD thesis, Universitat Autònoma de Barcelona (2016).

  15. Lovejoy, C. O., Suwa, G., Spurlock, L., Asfaw, B. & White, T. D. The pelvis and femur of Ardipithecus ramidus: the emergence of upright walking. Science 326, 71e1–71e6 (2009).

    Article  PubMed  Google Scholar 

  16. Prost, J. H. A definitional system for the classification of primate locomotion. Am. Anthropol. 67, 1198–1214 (1965).

    Article  Google Scholar 

  17. Puymerail, L. The functionally-related signatures characterizing the endostructural organisation of the femoral shaft in modern humans and chimpanzee. C. R. Palevol. 12, 223–231 (2013).

    Article  Google Scholar 

  18. Galik, K. et al. External and internal morphology of the BAR 1002′00 Orrorin tugenensis femur. Science 305, 1450–1453 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ohman, J. C., Lovejoy, C. O. & White, T. D. Questions about Orrorin femur. Science 307, 845 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Puymerail, L. Caractérisation de l'endostructure et des propriétés biomécaniques de la diaphyse fémorale: la signature de la bipédie et la reconstruction des paléo-répertoires posturaux et locomoteurs des hominines (Paris, Muséum National d'Histoire Naturelle, 2011).

  21. Wallace, I. J. et al. Functional significance of genetic variation underlying limb bone diaphyseal structure. Am. J. Phys. Anthropol. 143, 21–30 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lieberman, D. E., Polk, J. D. & Demes, B. Predicting long bone loading from cross‐sectional geometry. Am. J. Phys. Anthropol. 123, 156–171 (2004).

    Article  PubMed  Google Scholar 

  23. Grabowski, M., Hatala, K. G., Jungers, W. L. & Richmond, B. G. Body mass estimates of hominin fossils and the evolution of human body size. J. Hum. Evol. 85, 75–93 (2015).

    Article  PubMed  Google Scholar 

  24. Ruff, C. B., Burgess, M. L., Squyres, N., Junno, J. A. & Trinkaus, E. Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins. J. Hum. Evol. 115, 85–111 (2018).

    Article  PubMed  Google Scholar 

  25. Nadell, J. Ontogeny and Adaptation: A Cross-Sectional Study of Primate Limb Elements. PhD thesis, Durham University (2017).

  26. Nakatsukasa, M., Pickford, M., Egi, N. & Senut, B. Femur length, body mass, and stature estimates of Orrorin tugenensis, a 6 Ma hominid from Kenya. Primates 48, 171–178 (2007).

    Article  PubMed  Google Scholar 

  27. Lovejoy, C. O. et al. The great divides: Ardipithecus ramidus reveals the postcrania of our last common ancestors with African apes. Science 326, 73–106 (2009).

    Article  ADS  Google Scholar 

  28. Jungers, W. L., Grabowski, M., Hatala, K. G. & Richmond, B. G. The evolution of body size and shape in the human career. Phil. Trans. R. Soc. B 371, 20150247 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kuperavage, A., Pokrajac, D., Chavanaves, S. & Eckhardt, R. B. Earliest known hominin calcar femorale in Orrorin tugenensis provides further internal anatomical evidence for origin of human bipedal locomotion. Anat. Rec. 301, 1834–1839 (2018).

    Article  CAS  Google Scholar 

  30. Clark, J. D. et al. Palaeoanthropological discoveries in the middle Awash Valley, Ethiopia. Nature 307, 423–428 (1984).

    Article  ADS  Google Scholar 

  31. Hammer, A. The calcar femorale: a new perspective. J. Orthop. Surg. 27, 2309499019848778 (2019).

    Article  Google Scholar 

  32. Zhang, Q. et al. The role of the calcar femorale in stress distribution in the proximal femur. Orthop. Surg. 1, 311–316 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Haile-Selassie, Y., Suwa, G. & White, T. Hominidae. in Ardipithecus kadabba: Late Miocene Evidence From The Middle Awash, Ethiopia (eds Haile-Selassie, Y. & WoldeGabriel, G.) 159–236 (Univ. California Press, 2009).

  34. Araiza, I., Meyer, M. R. & Williams, S. A. Is ulna curvature in the StW 573 (‘Little Foot’) Australopithecus natural or pathological? J. Hum. Evol. 151, 102927 (2021).

    Article  PubMed  Google Scholar 

  35. Drapeau, M. S. M., Ward, C. V., Kimbel, W. H., Johanson, D. C. & Rak, Y. Associated cranial and forelimb remains attributed to Australopithecus afarensis from Hadar, Ethiopia. J. Hum. Evol. 48, 593–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Henderson, K., Pantinople, J., McCabe, K., Richards, H. L. & Milne, N. Forelimb bone curvature in terrestrial and arboreal mammals. PeerJ 5, e3229 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Drapeau, M. S. M. Functional anatomy of the olecranon process in hominoids and Plio-Pleistocene hominins. Am. J. Phys. Anthropol. 124, 297–314 (2004).

    Article  PubMed  Google Scholar 

  38. Milne, N. & Granatosky, M. C. Ulna curvature in arboreal and terrestrial primates. J. Mammal. Evol. 28, 897–909 (2021).

    Article  Google Scholar 

  39. Carlson, K. J. et al. Role of nonbehavioral factors in adjusting long bone diaphyseal structure in free-ranging Pan troglodytes. Int. J. Primatol. 29, 1401–1420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schmitt, D. Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: implications for interpreting locomotor behavior in fossil primates. J. Hum. Evol. 44, 47–58 (2003).

    Article  PubMed  Google Scholar 

  41. Cartmill, M. & Milton, K. The iorisiform wrist joint and the evolution of “brachiating” adaptations in the Hominoidea. Am. J. Phys. Anthrop. 47, 249–272 (1977).

    Article  CAS  PubMed  Google Scholar 

  42. Hunt, K. D. et al. Standardized descriptions of primate locomotor and postural modes. Primates 37, 363–387 (1996).

    Article  Google Scholar 

  43. Sarmiento, E. E. Anatomy of the hominoid wrist joint: its evolutionary and functional implications. Int. J. Primatol. 9, 281–345 (1988).

    Article  Google Scholar 

  44. Begun, D. R. Phyletic diversity and locomotion in primitive European hominids. Am. J. Phys. Anthropol. 87, 311–340 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Lovejoy, C. O., Simpson, S. W., White, T. D., Asfaw, B. & Suwa, G. Careful climbing in the Miocene: the forelimbs of Ardipithecus ramidus and humans are primitive. Science 326, 70e1–70e8 (2009).

    Article  PubMed  Google Scholar 

  46. Drapeau, M. S. M. Articular morphology of the proximal ulna in extant and fossil hominoids and hominins. J. Hum. Evol. 55, 86–102 (2008).

    Article  PubMed  Google Scholar 

  47. Alba, D. M., Almécija, S., Casanovas-Vilar, I., Méndez, J. M. & Moyà-Solà, S. A partial skeleton of the fossil great ape Hispanopithecus laietanus from Can Feu and the mosaic evolution of crown-hominoid positional behaviors. PLoS ONE 7, e39617 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tuttle, R. H. Knuckle‐walking and the evolution of hominoid hands. Am. J. Phys. Anthrop. 26, 171–206 (1967).

    Article  Google Scholar 

  49. Crompton, R. H., Vereecke, E. E. & Thorpe, S. K. Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. J. Anat. 212, 501–543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stern, J. T. & Susman, R. L. in Origine(s) de la Bipédie chez les Hominidés (eds Coppens, Y. & Senut, B.) 99–111 (CNRS, 1991).

  51. Kozma, E. E. et al. Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins. Proc. Natl Acad. Sci. USA 115, 4134–4139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Macchiarelli, R., Bergeret-Medina, A., Marchi, D. & Wood, B. Nature and relationships of Sahelanthropus tchadensis. J. Hum. Evol. 149, 102898 (2020).

    Article  PubMed  Google Scholar 

  53. Gommery, D. & Senut, B. The terminal thumb phalanx of Orrorin tugenensis (Upper Miocene of Kenya). Geobios 39, 372–384 (2006).

    Article  Google Scholar 

  54. Kirscher, U. et al. Age constraints for the Trachilos footprints from Crete. Sci. Rep. 11, 19427 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Meldrum, J. & Sarmiento, E. Comments on possible Miocene hominin footprints. Proc. Geol. Assoc. 129, 577–580 (2018).

    Article  Google Scholar 

  56. Guy, F. et al. Morphological affinities of the Sahelanthropus tchadensis (late Miocene hominid from Chad) cranium. Proc. Natl Acad. Sci. USA 102, 18836–18841 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Neaux, D. et al. Relationship between foramen magnum position and locomotion in extant and extinct hominoids. J. Jum. Evol. 113, 1–9 (2017).

    Google Scholar 

  58. Pilbeam, D. R. & Lieberman, D. E. in Chimpanzees and Human Evolution (eds Muller, M. N., Wrangham, R. W. & Pilbeam, D. R.) 22–141 (Belknap Harvard, 2017).

  59. Senut, B., Pickford, M., Gommery, D. & Ségalen, L. Palaeoenvironments and the origin of hominid bipedalism. Hist. Biol. 30, 284–296 (2018).

    Article  Google Scholar 

  60. WoldeGabriel, G. et al. Geology and palaeontology of the late Miocene Middle Awash valley, Afar rift, Ethiopia. Nature 412, 175–178 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. White, T. D. et al. Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science 326, 67–93 (2009).

    Article  ADS  Google Scholar 

  62. Barboni, D., Ashley, G. M., Bourel, B., Arraiz, H. & Mazur, J. C. Springs, palm groves, and the record of early hominins in Africa. Rev. Palaeobot. Palynol. 266, 23–41 (2019).

    Article  Google Scholar 

  63. Novello, A. et al. Phytoliths indicate significant arboreal cover at Sahelanthropus type locality TM266 in northern Chad and a decrease in later sites. J. Hum. Evol. 106, 66–83 (2017).

    Article  PubMed  Google Scholar 

  64. Steiper, M. E. & Seiffert, E. R. Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proc. Natl Acad. Sci. USA 109, 6006–6011 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Püschel, H. P., Bertrand, O. C., O’reilly, J. E., Bobe, R. & Püschel, T. A. Divergence-time estimates for hominins provide insight into encephalization and body mass trends in human evolution. Nat. Ecol. Evol. 5, 808–819 (2021).

    Article  PubMed  Google Scholar 

  66. Besenbacher, S., Hvilsom, C., Marques-Bonet, T., Mailund, T. & Schierup, M. H. Direct estimation of mutations in great apes reconciles phylogenetic dating. Nat. Ecol. Evol. 3, 286–292 (2019).

    Article  PubMed  Google Scholar 

  67. McBrearty, S. & Jablonski, N. G. First fossil chimpanzee. Nature 437, 105–108 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. DeSilva, J., Shoreman, E. & MacLatchy, L. A fossil hominoid proximal femur from Kikorongo Crater, southwestern Uganda. J. Hum. Evol. 50, 687–695 (2006).

    Article  PubMed  Google Scholar 

  69. Ishida, H. & Pickford, M. A new late Miocene hominoid from Kenya: Samburupithecus kiptalami gen. et sp. nov. C. R. Acad. Sci. Paris 325, 823–829 (1997).

    Google Scholar 

  70. Kunimatsu, Y. et al. A new late Miocene great ape from Kenya and its implications for the origins of African great apes and humans. Proc. Natl Acad. Sci. USA 104, 19220–19225 (2007).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  71. Suwa, G., Kono, R. T., Katoh, S., Asfaw, B. & Beyene, Y. A new species of great ape from the late Miocene epoch in Ethiopia. Nature 448, 921–924 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Katoh, S. et al. New geological and palaeontological age constraint for the gorilla–human lineage split. Nature 530, 215–218 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Begun, D. R. in Handbook of Paleoanthropology (eds Henke, W. & Tattersall, I.) 1261–1332 (Springer-Verlag, 2015).

  74. Mongle, C. S., Strait, D. S. & Grine, F. E. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J. Hum. Evol. 131, 28–39 (2019).

    Article  PubMed  Google Scholar 

  75. Wood, B. & Harrison, T. The evolutionary context of the first hominins. Nature 470, 347–352 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Mongle, C. S., Wallace, I. J. & Grine, F. E. Cross-sectional structural variation relative to midshaft along hominine diaphyses. II. The hind limb. Am. J. Phys. Anthropol. 158, 398–407 (2015).

    Article  PubMed  Google Scholar 

  78. Puymerail, L. et al. Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java). J. Hum. Evol. 63, 741–749 (2012).

    Article  PubMed  Google Scholar 

  79. Ruff, C. B., McHenry, H. M. & Thackeray, J. F. Cross‐sectional morphology of the SK 82 and 97 proximal femora. Am. J. Phys. Anthrop. 109, 509–521 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Ruff, C. B. Long bone articular and diaphyseal structure in Old World monkeys and apes. I: locomotor effects. Am. J. Phys. Anthrop. 119, 305–342 (2002).

    Article  PubMed  Google Scholar 

  81. Sládek, J. et al. Effect of deriving periosteal and endosteal contours from microCT scans on computation of cross-sectional properties in non-adults: the femur. J. Anat. 233, 381–393 (2018).

    Article  PubMed Central  Google Scholar 

  82. Ruff, C. E., Higgins, R. W., Carlson, K. J. in Hominin Postcranial Remains from Sterkfontein, South Africa, 1936–1995 (eds Zipfel, B., Richmond B. G. & Ward, C.) 307–320 (Oxford Univ. Press, 2020).

  83. Rohlf, F. J. tpsDig, digitize landmarks and outlines v.2.05 (Department of Ecology and Evolution, State University of New York at Stony Brook, 2005).

  84. Senut, B. Bipédie et climat. C. R. Palevol. 5, 89–98 (2006).

    Article  Google Scholar 

  85. Adams D., Collyer M., Kaliontzopoulou A. & Baken E. geomorph: Geometric Morphometric Analyses of 2D/3D Landmark Data. R package version 4.0. (2021).

  86. Baken, E. K., Collyer, M. L., Kaliontzopoulou, A. & Adams, D. C. Geomorph v4.0 and gmShiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Meth. Ecol. Evol. 12, 2355–2363 (2021).

    Article  Google Scholar 

  87. The Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  88. Bookstein, F. L. Pathologies of between-groups principal components analysis in geometric morphometrics. Evol. Biol. 46, 271–302 (2019).

    Article  Google Scholar 

  89. Cardini, A., O’Higgins, P. & Rohlf, F. J. Seeing distinct groups where there are none: spurious patterns from between-group PCA. Evol. Biol. 46, 303–316 (2019).

    Article  Google Scholar 

Download references


We thank the following institutions and colleagues: the Chadian Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et de l’Innovation and the Centre National de Recherche pour le développement (CNRD); the University of N’Djaména, the University of Poitiers, the Centre National de la Recherche Scientifique (CNRS), the French Ministère de l’Europe et des affaires étrangères, the Embassy of France to Chad, the région Nouvelle Aquitaine (project AH-HEM, NA2018-195586), and the French Army (MAM, Épervier and Barkhane) for its logistical support; M. Y. Khayal and B. Mallah (Director of the CNRD); all the MPFT members who participated in the field research, in particular D. Ahounta, G. Fanoné (deceased), A. Mahamat, F. Lihoreau and J. Surault; M. Brunet, head of the MPFT, for initiating this work and gathering the first comparative data as the basis of the present manuscript; the Musée Royal d’Afrique Centrale at Tervuren (E. Gillissen), the National Museum of Ethiopia, the National Museums of Kenya, Universitair Ziekenhuis at Leuven (W. Coudyzer), University of the Witwatersrand, B. Asfaw (Rift Valley Research Service), Y. Haile-Selassie (Cleveland Museum of Natural History), D. Johanson and W. Kimbel (Institute of Human Origins and Arizona State University at Tempe), C. O. Lovejoy (Kent State University), M. G. Leakey and R. Leakey, D. Pilbeam (Peabody Museum and Harvard University), T. D. White (University of California at Berkeley) and G. Suwa (University Museum of Tokyo) who granted M. Brunet and us access to their collections and contributed to the field research that collected these specimens; B. Zipfel (University of the Witwatersrand) for facilitating access to the hominin material from South Africa, including the StW 573m femur; G. Berillon, J. Braga, K. Carlson, R. Clarke, Q. Cosnefroy, R. Crompton, J. Heaton, J. Kappelman, D. Lieberman, F. Marchal, M. Pina, D. Stratford and M. Tocheri for providing comparative data and valuable comments; B. Senut, M. Pickford and D. Gommery for stimulating discussions and granting access to the CT scan and cast material of O.tugenensis; the Orrorin CT scans were done at the Clinique Pasteur (J.-P. Deymier, F. Berthoumieu, G. Larrouy, S. Charreau, A. M'Voto and P. Roch); the Orrorin Community Organisation and the Kenya Ministry of Education, Science and Technology; K. Cheboi and the Tugen palaeontology field team; all our colleagues and friends for their help and discussion, in particular D. Barboni, A. Mazurier (Plateforme Platina, IC2MP), A. Novello, O. Chavasseau, G. Merceron and J. Surault; S. Riffaut, J. Surault and X. Valentin for technical support; and G. Florent, C. Noël, G. Reynaud, C. Baron, M. Pourade and L. Painault for administrative guidance. Funding was provided by PALEVOPRIM and project AH-HEM (NA2018-195586).

Author information

Authors and Affiliations



F.G. and G.D. contributed equally to this work and are both first authors. F.G. and G.D. designed the study, collected and interpreted the data, ran the analyses and interpreted the results. G.D., F.G. and J.-R.B. wrote the manuscript. G.D., F.G., J.-R.B., L.P., H.T.M., A.L., A.M., P.V. and N.D.C. discussed the results and revised earlier drafts of the paper.

Corresponding author

Correspondence to F. Guy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Christopher Ruff and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Photographs of the postcranial original material from Toros-Ménalla, Chad.

TM 266-01-063 femur: a, anterior view; b, posterior view; c, lateral view; d, medial view. TM 266-01-358 ulna: e, anterior view; f, posterior view; g, lateral view; h, medial view. TM 266- 01-050 ulna: i, anterior view; j, posterior view; k, lateral view; l, medial view. Scale bar 10 mm.

Extended Data Fig. 2 Femoral anterior curvature.

Panel a. comparative femoral anteroposterior curvature. The TM 266-01-063 femur (S. tchadensis) is compared (from left to right) to BAR 1002’00 (Or. tugenensis, as published in2,84), BAR 1002’00 (Or. tugenensis, acquired from CT-scan data, as published in52), BAR 1003’00 (Or. tugenensis, acquired from CT-scan data, courtesy of B. Senut, M. Pickford and D. Gommery), StW 573 (A. prometheus, as published in10) and A.L. 288-1p (A. afarensis, cast). Femora are in medial view. The colored portions for TM 266-01-063, BAR 1002’00, BAR 1003’00 and StW 573 illustrate the interval used for the 2D geometric morphometrics analysis of the femoral antero-posterior curvature (between 80% and 35% of the biomechanical femoral length, this study). Two version of Or. tugenensis anterior femoral curvature were included in the analysis, BAR 1002’00* (Or. tugenensis, as published in2,84), and BAR 1002’00** (Or. tugenensis, acquired from CT-scan data, as appears in52). Femora are about the same scale. Ant. for anterior, dist. for distal. Panel b. Comparative analysis of the anterior femoral curvature of the TM 266 specimen. Principal component analysis of Procrustes coordinates for the anterior femoral curvature, in medial view, as estimated between 80% and 35% of the femoral biomechanical length in fossil and extant hominoids. Bivariate plot of PC1 and PC2 summarizes 89.3% of the total variation. Anterior femoral curvature variation, summarized by the PC1-2 shape space, is illustrated by an outline representation at the extremity of each axis; the red dot is for the proximal end of the anterior contour. Black solid arrows mark the main anterior convexities, whereas white open arrows are for the main anterior concavities. Two version of Or. tugenensis anterior femoral curvature were included in the analysis, BAR 1002’00* (Or. tugenensis, as published in2,84), and BAR 1002’00** (Or. tugenensis, acquired from CT-scan data, as appears in52). Distribution of the specimens along PC1 describes the degree of curvature between two morphological femoral shapes; rectilinear (negative values) and anteriorly curved (positive values). Along PC2, distribution of the specimens illustrates additional aspects of the femoral curvature including a transition between proximally (negative values) to distally (positive values) located anterior curvature. Along PC1, extant apes describes a morphological gradient from straight femora in orangs to curved femora in gorilla, chimpanzee and humans being intermediates. Along PC2, humans, gorillas and orangutans present a proximally located anterior curvature while chimpanzees display a relatively more distal anterior curvature. In this pattern, the fossil hominins, apart from BAR 1002’00** and early Homo, occupy a central position in the morphospace in having moderately curved femora and a centrally located anterior curvature. TM 266-01-063 presents higher degree of curvature compared to other fossil hominins, within the range of chimpanzees and gorillas along PC1 but close to BAR 1002’00*. Alternative version of BAR 1002’00** falls out of the range of variation for the extant apes in having a relatively straight femoral shaft, clearly differing in this respect from BAR 1002’00*. BAR 1002’00** is in line with early Homo along PC1 and is overall closer to KNM-ER 1481 than any other apes.

Extended Data Fig. 3 Comparison of TM 266-01-063 with extant African apes and Or. tugenensis, illustrating femoral size variation.

From left to right: femoral specimens of Gorilla, Pan, Homo, TM 266-01-063, BAR 1003’00, BAR 1002’00. All femora are in posterior view. Scale bar is 50 mm.

Extended Data Fig. 4 Illustration and estimation of the TM 266-01-063 diaphyseal antetorsion.

a. 3D view of the femur (virtual model) showing the position of the proximal (base of the lesser trochanter) and distal (25% of the total biomechanical length) transverse sections; b. transverse CT-slice cross-sections showing the mediolateral axis (M-L) and the orientation of the longest axis of the diaphyseal sections (proximal, upper panel and distal, lower panel) assessed by the mean of Feret’s diameters (Ft1 and Ft2 respectively); c., 3D view of the femur (virtual model) showing the femoral antetorsion by the mean of the relative orientation of the proximal and distal Feret’s diameters. The white curved arrows mark the diaphyseal torsion angle (DT) measured between Ft1 and Ft2. Ft1: 11.7° counterclockwise, relative to mediolateral axis; Ft2: 153.2° counterclockwise, relative to mediolateral axis; DT is 38.5°. The right panel d presents an illustration of the variation of the parameter DT, in degrees, in chimpanzee, gorilla and modern human. Box and whiskers are for mean (centre), mean ± standard deviation (bounds of box) and minimum/maximum (whiskers). In chimpanzee means for P. paniscus (Pp, n = 6) and Pan troglodytes (Pt, n = 12) are given. The red dotted line corresponds at the value measured for TM 266-01-063.

Extended Data Fig. 5 Bivariate plot of PC1 (33.8%) versus centroid size (Cs).

The Cs mean (symbols are for group mean) and its range (whiskers) for the extant and extinct hominoid sample are provided in the left grey panel. Modern humans, n = 12; bonobos, n = 12; common chimpanzees, n = 18; gorillas, n = 9; orangutans, n = 7; fossil hominins, n = 10 (80%), n = 13 (50%); Miocene apes, n = 3.

Extended Data Fig. 6 Cortical bone variation of TM 266-01-063.

Panels a, b, c. Cross-sectional geometric properties of the TM 266-01-063 femur. a, Location of transverse microCT-slices at the distal margin of the lesser trochanter (1) and at standard levels of biomechanical length (2-5). Corresponding percent of cortical area (i.e., CA/TA*100) is given at 80%, 65%, 50% and 35%; b, microCT-slice images of the selected transverse sections; c, interpretive drawings of the cortical thickness for selected microCT-slice sections, numbers are for the measured cortical thickness anteriorly, posteriorly, medially and laterally (in mm), maximum thickness is in red while minimum thickness is in green. TA, total area in mm2; CA, cortical area in mm2; %, percent of cortical area. Med. is for medial and Lat. is for lateral. Scale bar is (a) 10 mm; (b) 6 mm. Panel d. Three-dimensional cortical thickness of TM 266-01-063. From left to right, anterior, posterior, medial and lateral view. Scale bar is 25 mm. Chromatic scale corresponds to the look-up table of cortical thickness, from relatively thin (blue) to relatively thick (red) cortical diaphyseal bone. Posterior thickening of the cortical bone occurs at about the level of the nutrient foramen, where the ‘proto-linea aspera’ is the narrowest. The femoral cortical thickness distribution is also characterized by an anterior thinning, with a proximo-distal gradient. The lateral reinforcement pattern appears to parallel an insertion area including the mm. vastus lateralis and gluteus maximus proximally, and the attachment zone of the m. vastus intermedius distally. In medial view, the relative cortical thickening is restricted to the proximal portion of the femoral shaft, corresponding to the attachment of the m. vastus medialis. The third reinforcement occurs posteriorly at about 35-55% of the biomechanical length and corresponds to an insertion area delineated by the two mm. vasti and comprising the hip adductor and extensor (m. biceps femoris) muscles.

Extended Data Fig. 7 Comparative CSGP data for the Chadian femur and ulna.

a., b., c., Cross-sectional geometric properties at 80% of the femoral biomechanical length including percentage of cortical area (a, %CA.), second moments of area (b., Ix/Iy, and c., Imax/Imin). d., e., f., Cross-sectional geometric properties at 50% of the femoral biomechanical length including percent of cortical area (d, %CA,), second moments of area (e., Ix/Iy, and f., Imax/Imin). g., h., Second moments of area (g., Imax/Imin and h., Ix/Iy) at 50% of the ulna biomechanical length (TM 266-01-050). Extant apes are represented by mean (circle) and standard deviation (whiskers), whereas isolated circles represent individual values for fossil specimens. See Supplementary Table 2 specimen list. Ulnar data are from25,82. The yellowish frame encompasses the early hominin range of variation whereas the red dotted lines mark the mean values for Pan and extant Homo within each panel. For the femur: modern humans, n = 40; chimpanzees, n = 20; gorillas, n = 23; orangutans, n = 23; Miocene hominoids, n = 3; Miocene hominins, n = 3; australopiths, n = 5; early Homo, n = 6; neandertals, n = 9. For the ulna: modern humans, n = 19; chimpanzees, n = 17; gorillas, n = 14; orangutans, n = 14; gibbons, n = 16, Australopiths, n = 3.

Extended Data Fig. 8 Illustration of the calcar femorale of TM 266-01-063.

a, virtual representation of the proximal portion of the femur in posterior view, the asterisk marks the position of the parasagittal microCT-slice passing through the lesser trochanter; b, microCT-slice image of the parasagittal section showing the proximo-distal extension of the calcar femorale (cf) and b’, corresponding binarized image enhancing the calcar femorale; c, microCT-slice image of the parasagittal section in BAR 1003’00 femur (Or. tugenensis) showing the proximo-distal extension of the calcar femoral, and c’, corresponding binarized image; d, virtual representation of the proximal portion of the femur in posterior view showing transversal levels (i-vi) used for imaging the development of the calcar femorale (following29); e, microCT- slice images of the sections (i-vi as in TM 266-01-063) showing expression of the calcar femorale transversally (medial to the right and anterior to the top), and f, corresponding binarized version; g, microCT- slice images of the sections (i-vi) showing expression of the calcar femorale transversally in BAR 1003’00 (acquired from CT-scan data, this study). Scale bar for a, d, 10 mm; b, 6 mm; e, f, 4 mm.

Extended Data Fig. 9 Calcar femorale morphology in extant hominines.

The selected individuals corresponds to morphological extrema, i.e., the minimal and maximal degrees of expression of the calcar femorale, in our comparative sample (wild caught specimens). The boxes are for a, modern humans; b, chimpanzees (Pan paniscus); c, chimpanzees (Pan troglodytes); d, gorillas. For each box, parasagittal views are on the left (taken at the maximal possible degree of expression of the calcar femorale, around mid-width of the lesser trochanter, see lower right panel); transversal views are on the right (taken at the maximal possible degree of expression of the calcar femorale, ca at the proximal border of the lesser trochanter, see lower right panel). The asterisk marks an evidence of a calcar femorale. The calcar femorale is present in all modern humans of our sample; in parasagittal view, its expression displays a columnar aspect with an oblique orientation. The trabecular bundle forming the CF shows various degree of densification and thickness, from loose (e.g., third specimen from the top) to tightened (e.g., first and fourth specimens from the top). In transversal view, the CF forms a rather short spur originating from the thickened medial cortical bone. By contrast, most of our sampled non-human apes do not show any evidence of a columnar and oblique trabecular bundle. At best, a thin, curved, cancellous bone densification is identifiable in parasagittal view. In transversal view, the CF, when present, corresponds to a thin ray composed of few or single trabeculae, contrasting in this aspect with the modern human condition. Besides, the degree of development of the CF is associated with a relative thickening of the antero-medial cortical bone, but with a less extent in non-human apes than in modern humans. In modern humans, the thickening tends to be more medial than antero-medial. This configuration potentially enlightens the results from29 showing a lengthened CF in modern humans compared to non-human apes, as the absolute CF length was measured from the tip of the CF to the exterior cortical boundary.

Extended Data Fig. 10 Ulnar comparison of S. tchadensis and extinct and extant hominines.

a., lateral view; b., anterior view; c., medial view; d. posterior view. All ulnae are from 3D virtual models, except for A.L. 438-1 (modified from35), ALA-VP-2/101 (modified from33) and StW 573 (modified from10). Scale bar is 40 mm. F and M are for female and male.

Supplementary information

Supplementary Information

Includes Supplementary Notes 1–5 providing information on the context of discovery, fossil descriptions, comments on Figs. 2 and 3, comparisons of cortical thickness, cross-sectional geometric properties and definitions. In addition, Supplementary Tables 1 and 4 provide raw measurements and sample lists, respectively.

Reporting Summary

Supplementary Table 2

Comparative femoral cross-sectional geometric properties in extinct and extant apes.

Supplementary Table 3

Morphological state of the main preserved features in the femur and ulnae of S. tchadensis, and their comparative in the extant and extinct hominins.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daver, G., Guy, F., Mackaye, H.T. et al. Postcranial evidence of late Miocene hominin bipedalism in Chad. Nature 609, 94–100 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing