Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic memory and spontaneous vortices in a van der Waals superconductor

Abstract

Doped Mott insulators exhibit some of the most intriguing quantum phases of matter, including quantum spin liquids, unconventional superconductors and non-Fermi liquid metals1,2,3. Such phases often arise when itinerant electrons are close to a Mott insulating state, and thus experience strong spatial correlations. Proximity between different layers of van der Waals heterostructures naturally realizes a platform for experimentally studying the relationship between localized, correlated electrons and itinerant electrons. Here we explore this relationship by studying the magnetic landscape of tantalum disulfide 4Hb-TaS2, which realizes an alternating stacking of a candidate spin liquid and a superconductor4. We report on a spontaneous vortex phase whose vortex density can be trained in the normal state. We show that time-reversal symmetry is broken in the normal state, indicating the presence of a magnetic phase independent of the superconductor. Notably, this phase does not generate ferromagnetic signals that are detectable using conventional techniques. We use scanning superconducting quantum interference device microscopy to show that it is incompatible with ferromagnetic ordering. The discovery of this unusual magnetic phase illustrates how combining superconductivity with a strongly correlated system can lead to unexpected physics.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Spontaneous vortex phase in 4Hb-TaS2.
Fig. 2: Magnetic hysteresis.
Fig. 3: Absence of magnetic signals in the normal state.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Sachdev, S. Colloquium: Order and quantum phase transitions in the cuprate superconductors. Rev. Mod. Phys. 75, 913–932 (2003).

    ADS  CAS  Article  Google Scholar 

  2. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    ADS  CAS  Article  Google Scholar 

  3. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  4. Ribak, A. et al. Chiral superconductivity in the alternate stacking compound 4Hb-TaS2. Sci. Adv. 6, eaax9480 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  6. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  7. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    ADS  CAS  Article  Google Scholar 

  8. Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    ADS  CAS  PubMed  Article  Google Scholar 

  9. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  10. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    ADS  CAS  Article  Google Scholar 

  11. Nagata, S. et al. Superconductivity in the layered compound 2H-TaS2. J. Phys. Chem. Solids 53, 1259–1263 (1992).

    ADS  CAS  Article  Google Scholar 

  12. Fazekas, P. & Tosatti, E. Electrical, structural and magnetic properties of pure and doped 1T-TaS2. Phil. Mag. B 39, 229–244 (1979).

    ADS  CAS  Article  Google Scholar 

  13. Law, K. T. & Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl Acad. Sci. USA 114, 6996–7000 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. He, W.-Y., Xu, X. Y., Chen, G., Law, K. T. & Lee, P. A. Spinon Fermi surface in a cluster Mott insulator model on a triangular lattice and possible application to 1T-TaS2. Phys. Rev. Lett. 121, 046401 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  15. Ribak, A. et al. Gapless excitations in the ground state of 1T-TaS2. Phys. Rev. B 96, 195131 (2017).

    ADS  Article  Google Scholar 

  16. Klanjšek, M. et al. A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 13, 1130–1134 (2017).

    Article  CAS  Google Scholar 

  17. Mañas-Valero, S., Huddart, B. M., Lancaster, T., Coronado, E. & Pratt, F. L. Quantum phases and spin liquid properties of 1T-TaS2. npj Quantum Mater. 6, 69 (2021).

    ADS  Article  CAS  Google Scholar 

  18. Benedičič, I. et al. Superconductivity emerging upon Se doping of the quantum spin liquid 1T-TaS2. Phys. Rev. B 102, 054401 (2020).

    ADS  Article  Google Scholar 

  19. Murayama, H. et al. Effect of quenched disorder on the quantum spin liquid state of the triangular-lattice antiferromagnet 1T-TaS2. Phys. Rev. Res. 2, 013099 (2020).

    CAS  Article  Google Scholar 

  20. Vaňo, V. et al. Artificial heavy fermions in a van der Waals heterostructure. Nature 599, 582–586 (2021).

    ADS  PubMed  Article  CAS  Google Scholar 

  21. Ruan, W. et al. Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy. Nat. Phys. 17, 1154–1161 (2021).

    CAS  Article  Google Scholar 

  22. Xu, G. et al. Holes in a quantum spin liquid. Science 289, 419–422 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  23. Wessel, S., Normand, B., Sigrist, M. & Haas, S. Order by disorder from nonmagnetic impurities in a two-dimensional quantum spin liquid. Phys. Rev. Lett. 86, 1086–1089 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  24. Szasz, A., Motruk, J., Zaletel, M. P. & Moore, J. E. Chiral spin liquid phase of the triangular lattice Hubbard model: a density matrix renormalization group study. Phys. Rev. X 10, 021042 (2020).

    CAS  Google Scholar 

  25. Hu, W.-J., Gong, S.-S. & Sheng, D. N. Variational Monte Carlo study of chiral spin liquid in quantum antiferromagnet on the triangular lattice. Phys. Rev. B 94, 75131 (2016).

    ADS  Article  CAS  Google Scholar 

  26. Song, X.-Y., Vishwanath, A. & Zhang, Y.-H. Doping the chiral spin liquid: topological superconductor or chiral metal. Phys. Rev. B 103, 165138 (2021).

    ADS  CAS  Article  Google Scholar 

  27. Ng, T. K. & Varma, C. M. Spontaneous vortex phase discovered? Phys. Rev. Lett. 78, 330–333 (1997).

    ADS  CAS  Article  Google Scholar 

  28. Paulsen, C., Hykel, D. J., Hasselbach, K. & Aoki, D. Observation of the Meissner–Ochsenfeld effect and the absence of the meissner state in UCoGe. Phys. Rev. Lett. 109, 237001 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  29. Stolyarov, V. S. et al. Domain Meissner state and spontaneous vortex–antivortex generation in the ferromagnetic superconductor EuFe2(As0.79P0.21)2. Sci. Adv. 4, eaat1061 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. Sonin, E. B. & Felner, I. Spontaneous vortex phase in a superconducting weak ferromagnet. Phys. Rev. B 57, R14000–R14003 (1998).

    ADS  CAS  Article  Google Scholar 

  31. Jiao, W.-H., Tao, Q., Ren, Z., Liu, Y. & Cao, G.-H. Evidence of spontaneous vortex ground state in an iron-based ferromagnetic superconductor. npj Quantum Mater. 2, 50 (2017).

    ADS  Article  CAS  Google Scholar 

  32. Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum materials: nematicity and beyond. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).

    ADS  Article  Google Scholar 

  33. Bojesen, T. A., Babaev, E. & Sudbø, A. Phase transitions and anomalous normal state in superconductors with broken time-reversal symmetry. Phys. Rev. B 89, 104509 (2014).

    ADS  Article  CAS  Google Scholar 

  34. Schemm, E. R., Gannon, W. J., Wishne, C. M., Halperin, W. P. & Kapitulnik, A. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt3. Science 345, 190–193 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  35. Hayes, I. M. et al. Multicomponent superconducting order parameter in UTe2. Science 373, 797–801 (2021).

    ADS  CAS  PubMed  Article  Google Scholar 

  36. Knigavko, A. & Rosenstein, B. Spontaneous vortex state and ferromagnetic behavior of type-II p-wave superconductors. Phys. Rev. B 58, 9354–9364 (1998).

    ADS  CAS  Article  Google Scholar 

  37. Nayak, A. K. et al. Evidence of topological boundary modes with topological nodal-point superconductivity. Nat. Phys. 17, 1413–1419 (2021).

    CAS  Article  Google Scholar 

  38. Grinenko, V. et al. State with spontaneously broken time-reversal symmetry above the superconducting phase transition. Nat. Phys. 17, 1254–1259 (2021).

    CAS  Article  Google Scholar 

  39. Fauqué, B. et al. Magnetic order in the pseudogap phase of high-Tc superconductors. Phys. Rev. Lett. 96, 197001 (2006).

    ADS  PubMed  Article  CAS  Google Scholar 

  40. Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008).

    ADS  PubMed  Article  CAS  Google Scholar 

  41. Sonier, J. E. et al. Anomalous weak magnetism in superconducting YBa2Cu3O6+x. Science 292, 1692–1695 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  42. Zhang, J. et al. Discovery of slow magnetic fluctuations and critical slowing down in the pseudogap phase of YBa2Cu3Oy. Sci. Adv. 4, eaao5235 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).

    ADS  CAS  Article  Google Scholar 

  44. Motrunich, O. I. Orbital magnetic field effects in spin liquid with spinon Fermi sea: possible application to κ-(ET)2Cu2(CN)3. Phys. Rev. B 73, 155115 (2006).

    ADS  Article  CAS  Google Scholar 

  45. Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  46. Rizzo, D. J. et al. Charge-transfer plasmon polaritons at graphene/α-RuCl3 interfaces. Nano Lett. 20, 8438–8445 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. König, E. J., Randeria, M. T. & Jäck, B. Tunneling spectroscopy of quantum spin liquids. Phys. Rev. Lett. 125, 267206 (2020).

    ADS  PubMed  Article  Google Scholar 

  48. Neupert, T., Denner, M. M., Yin, J.-X., Thomale, R. & Hasan, M. Z. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2022).

    CAS  Article  Google Scholar 

  49. Gardner, B. W. et al. Scanning superconducting quantum interference device susceptometry. Rev. Sci. Instrum. 72, 2361–2364 (2001).

    ADS  CAS  Article  Google Scholar 

  50. Huber, M. E. et al. Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples. Rev. Sci. Instrum. 79, 53704 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Beidenkopf, Y. Dagan, A. Aurbach, E. Shimshoni, R. Ilan, F. de Juan and I. Sochnikov for discussions; and T. R. Devidas for assistance with the NbSe2 measurements. E.P., A.V.B. and B.K. were supported by the European Research Council grant number ERC-2019-COG-866236, the Israeli Science Foundation grant number ISF-1251/19, COST Action CA16218, the QuantERAERA-NET Cofund in Quantum Technologies, project number 731473 and the Pazy Research Foundation grant number 107-2018. E.B. was supported by the European Research Council grant number ERC-2019-COG-817799. J.R. was supported by the Israeli Science Foundation grant number ISF-994/19. A.K. was supported by Israeli Science Foundation grant number ISF-1263/21.

Author information

Authors and Affiliations

Authors

Contributions

E.P. and B.K. designed the experiments. E.P., A.V.B. and B.K. performed the scanning SQUID measurements. I.F., A.A. and A.K. prepared the samples. A.A. performed the global characterization measurements. E.P., B.K., E.A., E.B., I.K., J.R. and A.K. discussed the data and interpreted the results. E.P. and B.K. wrote the manuscript with contributions from all co-authors.

Corresponding authors

Correspondence to Eylon Persky or Beena Kalisky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Determination of Tc.

(a) Local susceptibility maps taken at different temperatures below and above Tc. Below Tc, the diamagnetic response is homogeneous to within ±2% of the space-averaged signal, even at T = 2.6 K, close to Tc. At T = 2.8 K (>Tc) we detect no signal within our noise level, demonstrating that the system is completely normal within our field of view. (b) Local magnetometry images of the sample following a field cool at various temperatures. The images clearly show vortices below Tc, which are completely absent above Tc (note the change to the colour span at T = 2.8 K). Scale bars, 20 µm. (c) Local temperature dependence of the susceptibility taken at a representative single point on the sample. (d) Resistance measurements as a function of temperature. (e) Global magnetization measured after field cooling the sample with an external field of 100 Oe. All measurements show a sharp superconducting transition at ~ 2.7 K.

Extended Data Fig. 2 Absence of magnetic memory decay with time.

(a) The sample was first trained by field-cooling it through 3.6 K. It was then kept at 3 K for various amounts of time, before ZFC to 1.7 K and measuring the resulting vortex density. (b–d) SQUID images of the spontaneous vortices in the superconducting phase after waiting for (b) 3 min, (c) 6 min, and (d) 12 min at 3 K. The vortex density did not change as a function of time waited at the normal state. Scale bars, 30 µm.

Extended Data Fig. 3 Global magnetization of the sample-holder printed circuit board.

The magnetization was measured at 2 K, showing no hysteresis when the field was swept from −7 T to 7 T.

Extended Data Fig. 4 Absence of magnetic memory in a NbSe2 flake.

(a) To demonstrate how the Meissner response of a NbSe2 flake can be used to probe external magnetic fields, we measured its magnetic signal at 4.2 K, at various magnetic fields. (b) The corresponding magnetic flux images at 4.2 K, showing signals due to the Meissner response. Note that both the presence of an external field and its polarity can be detected through the Meissner effect. When the field is turned off (scan #2) the signal disappears. (c) A “field cooling” protocol from 4.2 K to 1.7 K, like that used in Fig. 1. (d) The corresponding magnetic flux images. After the field is turned off at 1.7 K (scan #6), the Meissner response disappears, demonstrating that there is no remnant field in the system. (e) Line cuts showing the Meissner response from scans #4–6. The data from scan #5 (field on) is multiplied by 0.1.

Extended Data Fig. 5 Absence of global magnetic signal above Tc.

The global magnetization of the sample as a function of the external field, taken at 3.2 K. The magnetic response was not hysteretic for fields up to 7 T.

Supplementary information

Supplementary Information

This file contains Supplementary Notes 1–3 and additional references.

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Persky, E., Bjørlig, A.V., Feldman, I. et al. Magnetic memory and spontaneous vortices in a van der Waals superconductor. Nature 607, 692–696 (2022). https://doi.org/10.1038/s41586-022-04855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04855-2

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing