Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topologically protected magnetoelectric switching in a multiferroic


Electric control of magnetism and magnetic control of ferroelectricity can improve the energy efficiency of magnetic memory and data-processing devices1. However, the necessary magnetoelectric switching is hard to achieve, and requires more than just a coupling between the spin and the charge degrees of freedom2,3,4,5. Here we show that an application and subsequent removal of a magnetic field reverses the electric polarization of the multiferroic GdMn2O5, thus requiring two cycles to bring the system back to the original configuration. During this unusual hysteresis loop, four states with different magnetic configurations are visited by the system, with one half of all spins undergoing unidirectional full-circle rotation in increments of about 90 degrees. Therefore, GdMn2O5 acts as a magnetic crankshaft that converts the back-and-forth variations of the magnetic field into a circular spin motion. This peculiar four-state magnetoelectric switching emerges as a topologically protected boundary between different two-state switching regimes. Our findings establish a paradigm of topologically protected switching phenomena in ferroic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Magnetic unit cell of GdMn2O5.
Fig. 2: Evolution of the electric polarization loop across critical angle and critical temperature.
Fig. 3: Simulation of magnetoelectric switching.
Fig. 4: Magnetoelectric switching regimes.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at

Code availability

The code of the model used to produce the fits is available on GitHub at


  1. Bibes, M. & Barthélémy, A. Towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008).

    Article  ADS  CAS  Google Scholar 

  2. Kleemann, W. Magnetoelectric spintronics. J. Appl. Phys. 114, 027013 (2013).

    Article  ADS  Google Scholar 

  3. Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).

    Article  ADS  CAS  Google Scholar 

  4. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    Article  ADS  CAS  Google Scholar 

  5. Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    Article  CAS  Google Scholar 

  6. Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).

    Article  Google Scholar 

  7. Khan, A. I., Keshavarzi, A. & Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020).

    Article  Google Scholar 

  8. Zhang, Z. et al. Memory materials and devices: from concept to application. InfoMat 2, 261–290 (2020).

    Article  CAS  Google Scholar 

  9. Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).

    Article  CAS  Google Scholar 

  10. Khomskii, D. Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009).

    Article  Google Scholar 

  11. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005).

    Article  ADS  CAS  Google Scholar 

  12. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    Article  ADS  CAS  Google Scholar 

  13. Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

    Article  ADS  CAS  Google Scholar 

  14. Scott, J. F. Room-temperature multiferroic magnetoelectrics. NPG Asia Mater. 5, e72 (2013).

    Article  CAS  Google Scholar 

  15. Tokunaga, Y. et al. Composite domain walls in a multiferroic perovskite ferrite. Nat. Mater. 8, 558–562 (2009).

    Article  ADS  CAS  Google Scholar 

  16. Tokunaga, Y., Taguchi, Y., Arima, T.-H. & Tokura, Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nat. Phys. 8, 838–844 (2012).

    Article  CAS  Google Scholar 

  17. Vanderbilt, D. Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ Press, 2018).

  18. Alonso, J., Casais, M., Martínez-Lope, M. & Fernández-Díaz, M. A structural study from neutron diffraction data and magnetic properties of RMn2O5 (R = La, rare earth). J. Phys. Condens. Matter 9, 8515–8526 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Chapon, L. et al. Structural anomalies and multiferroic behavior in magnetically frustrated TbMn2O5. Phys. Rev. Lett. 93, 177402 (2004).

    Article  ADS  CAS  Google Scholar 

  20. Chapon, L., Radaelli, P., Blake, G., Park, S. & Cheong, S. Ferroelectricity induced by acentric spin-density waves in YMn2O5. Phys. Rev. Lett. 96, 097601 (2006).

    Article  ADS  CAS  Google Scholar 

  21. Kim, J.-H. et al. Magnetic excitations in the low-temperature ferroelectric phase of multiferroic YMn2O5 using inelastic neutron scattering. Phys. Rev. Lett. 107, 097401 (2011).

    Article  ADS  Google Scholar 

  22. Lee, N. et al. Giant tunability of ferroelectric polarization in GdMn2O5. Phys. Rev. Lett. 110, 137203 (2013).

    Article  ADS  CAS  Google Scholar 

  23. Giovannetti, G. & van den Brink, J. Electronic correlations decimate the ferroelectric polarization of multiferroic HoMn2O5. Phys. Rev. Lett. 100, 227603 (2008).

    Article  ADS  Google Scholar 

  24. Bukhari, S. H. et al. Magnetoelectric phase diagrams of multiferroic GdMn2O5. Phys. Rev. B 94, 174446 (2016).

    Article  ADS  Google Scholar 

  25. Munõz, A. et al. Magnetic structure and properties of BiMn2O5: a neutron diffraction study. Phys. Rev. B 65, 144423 (2002).

    Article  ADS  Google Scholar 

  26. Vecchini, C. et al. Commensurate magnetic structures of RMn2O5 (R = Y, Ho, Bi) determined by single-crystal neutron diffraction. Phys. Rev. B 77, 134434 (2008).

    Article  ADS  Google Scholar 

  27. Oh, Y. S. et al. Non-hysteretic colossal magnetoelectricity in a collinear antiferromagnet. Nat. Commun. 5, 3201 (2014).

    Article  ADS  Google Scholar 

  28. Rice, M. J. & Mele, E. J. Elementary excitations of a linearly conjugated diatomic polymer. Phys. Rev. Lett. 49, 1455–1459 (1982).

    Article  ADS  CAS  Google Scholar 

  29. Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nat. Phys. 12, 350–354 (2016).

    Article  CAS  Google Scholar 

  30. Nakajima, S. et al. Topological thouless pumping of ultracold fermions. Nat. Phys. 12, 296–300 (2016).

    Article  CAS  Google Scholar 

  31. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795–800 (2013).

    Article  CAS  Google Scholar 

  32. Sushkov, A., Mostovoy, M., Valdés Aguilar, R., Cheong, S.-W. & Drew, H. Electromagnons in multiferroic RMn2O5 compounds and their microscopic origin. J. Phys. Condens. Matter 20, 434210 (2008).

    Article  ADS  Google Scholar 

  33. Ren, W. E. W. & Vanden-Eijnden, E. String method for the study of rare events. Phys. Rev. B 66, 052301 (2002).

    ADS  Google Scholar 

  34. Mills, G., Jónsson, H. & Schenter, G. K. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324, 305–337 (1995).

    Article  ADS  CAS  Google Scholar 

Download references


This work was supported by the Austrian Science Funds (I 2816-N27 and P 32404-N27). The work at Rutgers University was supported by the DOE under grant number DOE: DE-FG02-07ER46382. M.M. acknowledges Vrije FOM-programma ‘Skyrmionics’.

Author information

Authors and Affiliations



Andrei Pimenov initiated the project; Andrei Pimenov, S.A., M.M. and S.-W.C, supervised the project; A.S. and T.K. designed the experiment; X.W. grew the samples; Anna Pimenov, T.K. and J.W. characterized the samples using various techniques; J.W. and T.K. conducted the experiments and analysed the data; L.P., S.A. and M.M. developed the theory; L.P., S.A., Andrei Pimenov and M.M. wrote the manuscript with the feedback from all authors.

Corresponding author

Correspondence to S. Artyukhin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Hena Das and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Magic-angle region.

The panels demonstrate the influence of selected model parameters on the magic-angle region. In each panel only the parameter labelled on the vertical axis is varied, whereas the others are kept at the values reported in the text of this section, and used for Fig. 3 of the main text. All parameters are reported in units of meV. The blue regions signify the low-angle switching regime, while the red denotes the high angle switching regime. The white boundary region is where the double loop switching regime occurs, characterized by a winding number of 1, and is topologically protected by the neighbouring regimes.

Extended Data Fig. 2 Switching with modified model parameters.

ac Evolution of electric polarization \({P}_{b}\) during the magnetic field sweep cycle for various magnetic field orientations. In each panel, the changes of the curve colour from red to blue indicate the progression of the sweep cycle. The four-state switching is seen for the field at the magic orientation. The insets indicate the corresponding switching paths and winding numbers. d– Trajectories (in white) of AFM order parameter orientations \(({\varphi }_{{{\rm{L}}}_{1}},{\varphi }_{{{\rm{L}}}_{2}})\) through the field sweep cycles in different regimes. The colour map shows the energy landscape at an intermediate field \({H}^{* }\).

Extended Data Fig. 3 Simplified single chain model.

The crankshaft behaviour can be reproduced within the model that only involves the single AFM chain (purple ions), coupled to Gd ions \({{\bf{S}}}_{3}\) and \({{\bf{S}}}_{6}\) (indicated by the dashed rectangle).

Extended Data Fig. 4 Mechanism of the spin reorientation transition.

a Exchange interactions between Gd ions and neighbouring AFM Mn chains (v1,2). Easy axes for L1,2 coincide with the longer zigzag segments; for Gd – with blue lines indicating v1 exchange. b Field dependence of energy contributions: magnetodipolar interactions, Gd–Mn exchange, Zeeman energy of Gd spins and energy of antiferromagnetically ordered Mn spins, for the field pointing at 10° to the a axis. c Spin configuration in state 2 and in the states, corresponding to the saddle points at the barriers toward the neighbouring minima at \(H={H}^{* }\) (states and colour coding for spins is indicated in the inset). The numbers in blue show the field projections of magnetization difference of Gd and Mn ions in the saddle-point states. The difference of magnetization components along the field in two saddle-point states results in the asymmetric barrier evolution when the field is varied.

Extended Data Fig. 5 The spin configurations corresponding to the four states.

Gd ions are shown in green while Mn ions are in purple. The blue lines indicate the AFM zigzag chains.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponet, L., Artyukhin, S., Kain, T. et al. Topologically protected magnetoelectric switching in a multiferroic. Nature 607, 81–85 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing