







    Skip to main content




    
        
        Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
            the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
            Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
            and JavaScript.


    




    

    
            

            
                
                    Advertisement

                    
        
            
    
        
            
                [image: Advertisement]
        

    


        
    
                

            
        

    
        
            
                
                    
                    
                    
                        
                        
                            
                                
                                [image: Nature]
                            
                        
                    
                    

                    
                    	
                            
                                View all journals
                            
                        
	
                            
                                Search
                            
                        
	
                            
                                Log in
                            
                        


                

            

        

        
            
                
                    
                        	
                                    
                                        Explore content
                                    
                                
	
                                    
                                        About the journal
                                    
                                
	
                                        
                                            Publish with us
                                        
                                    
	
                                    
                                        Subscribe
                                    
                                


                        	
                                    
                                        Sign up for alerts
                                    
                                
	
                                    
                                            RSS feed
                                    
                                


                    

                

            

        
    


    
    
        
            
                	nature



	articles

	
                                    article


    
        
        
            
            
                
                    	Article
	Published: 29 June 2022



                    Chiral molecular intercalation superlattices

                    	Qi QianÂ 
            ORCID: orcid.org/0000-0002-9775-24651Â na1, 
	Huaying Ren1Â na1, 
	Jingyuan Zhou1, 
	Zhong Wan1, 
	Jingxuan Zhou2, 
	Xingxu YanÂ 
            ORCID: orcid.org/0000-0001-7991-48493, 
	Jin Cai2, 
	Peiqi Wang1, 
	Bailing Li4, 
	Zdenek Sofer5, 
	Bo Li4, 
	Xidong DuanÂ 
            ORCID: orcid.org/0000-0002-4951-901X4, 
	Xiaoqing PanÂ 
            ORCID: orcid.org/0000-0002-0965-85683,6,7, 
	Yu HuangÂ 
            ORCID: orcid.org/0000-0003-1793-07412,8 & 
	â€¦
	Xiangfeng DuanÂ 
            ORCID: orcid.org/0000-0002-4321-62881,8Â 

Show authors

                    

                    
                        
    Nature

                        volumeÂ 606,Â pages 902â€“908 (2022)Cite this article
                    

                    
        
            	
                        24k Accesses

                    
	
                        68 Citations

                    
	
                            43 Altmetric

                        
	
                    Metrics details

                


        

    
                    
                

                
    
        Subjects

        	Electronic devices
	Spintronics
	Two-dimensional materials


    


                
    
    

    
    

                
            


        
            Abstract
The discovery of chiral-induced spin selectivity (CISS) opens up the possibility to manipulate spin orientation without external magnetic fields and enables new spintronic device designs1,2,3,4. Although many approaches have been explored for introducing CISS into solid-state materials and devices, the resulting systems so far are often plagued by high inhomogeneity, low spin selectivity or limited stability, and have difficulties in forming robust spintronic devices5,6,7,8. Here we report a new class of chiral molecular intercalation superlattices (CMIS) as a robust solid-state chiral material platform for exploring CISS. The CMIS were prepared by intercalating layered two-dimensional atomic crystals (2DACs) (such as TaS2 and TiS2) with selected chiral molecules (such as R-Î±-methylbenzylamine and S-Î±-methylbenzylamine). The X-ray diffraction and transmission electron microscopy studies demonstrate highly ordered superlattice structures with alternating crystalline atomic layers and self-assembled chiral molecular layers. Circular dichroism studies show clear chirality-dependent signals between right-handed (R-) and left-handed (S-) CMIS. Furthermore, by using the resulting CMIS as the spin-filtering layer, we create spin-selective tunnelling junctions with a distinct chirality-dependent tunnelling current, achieving a tunnelling magnetoresistance ratio of more thanÂ 300Â per cent and a spin polarization ratio of more thanÂ 60Â per cent. With a large family of 2DACs of widely tunable electronic properties and a vast selection of chiral molecules of designable structural motifs, the CMIS define a rich family of artificial chiral materials for investigating the CISS effect and capturing its potential for new spintronic devices.
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                    Fig. 1: Schematic drawings of CISS and the preparation of CMIS.[image: ]


Fig. 2: Structural characterizations of R-MBAÂ andÂ S-MBA intercalation superlattices.[image: ]


Fig. 3: Optical characterizations of R-MBA and S-MBA intercalation superlattices.[image: ]


Fig. 4: STJs made from R-CMIS and S-CMIS.[image: ]


Fig. 5: Temperature-dependent transport characteristics of a STJ with S-CMIS.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Characterizations of CMIS layer expansion.
a, The evolution of XRD patterns of R-MBA intercalated H-TaS2 as a function of reaction time. The XRD patterns show that the original set of (00l) peaks gradually dwindle and eventually completely vanish with increasing intercalation duration, whereas a new set of (00l) peaks of the intercalation materials grows and eventually evolves into the only set of diffraction peaks after 48â€‰h of intercalation, indicating the complete intercalation to form phase-pure intercalation superlattices. b, XRD patterns of the R-DMPEA/H-TaS2 and S-DMPEA/H-TaS2 CMIS and intrinsic H-TaS2. c, XRD patterns of the L-histidine/H-TaS2 CMIS and intrinsic H-TaS2. XRD results show that diffraction peaks of (00l) planes of DMPEA/H-TaS2 and L-histidine/H-TaS2 are considerably shifted to lower diffraction angles with an interlayer expansion of 11.6â€‰Ã… and 4.5â€‰Ã…, respectively, when compared with those of the intrinsic bulk H-TaS2 (b), suggesting the successful intercalation of these molecules in H-TaS2.


Extended Data Fig. 2 STEM image and SAED patterns of the intrinsic H-TaS2.
a, STEM image of the basal plane of intrinsic H-TaS2. Blue and yellow dots represent tantalum and sulfur, respectively. Scale bar, 1â€‰nm. b, SAED patterns of intrinsic H-TaS2. Scale bar, 2â€‰nmâˆ’1. The in-plane lattice parameter remains unchanged between H-TaS2 and MBA/TaS2 CMIS, confirming that the H-TaS2 host layers retain the original atomic structure with no notable lattice distortion after the formation of CMIS.


Extended Data Fig. 3 CD spectra of CMIS with different chiral molecule intercalations.
a, CD spectra of chiral molecules dispersed in IPA and pure IPA. All the CD spectra are acquired by using quartz cuvette. The concentrations of R-MBA and S-MBA molecules are about 0.5â€‰mmolâ€‰mlâˆ’1. b, CD spectra of R-DMPEA/H-TaS2 and S-DMPEA/H-TaS2 CMIS and intrinsic H-TaS2. c, CD spectra of L-histidine/H-TaS2 CMIS and intrinsic H-TaS2.


Extended Data Fig. 4 Further characterizations of Cr3Te4 and non-chiral junctions.
a, Temperature-dependent anomalous Hall resistance of a representative Cr3Te4 nanoplate, showing a coercive field of 0.5â€‰T at 10â€‰K and a Curie temperature of around 200â€‰K. The coercive field is consistent with the abrupt changes of the conductivity observed in the STJ device. The large hysteresis loops of the anomalous Hall resistance suggest a robust out-of-plane ferromagnetic ordering at low temperature, which is required for the vertical STJ. b, Two-terminal resistance of a typical Cr3Te4 nanoplate at 10â€‰K, showing typical resistances <3â€‰kÎ©. c, The zoomed-in plot of b between 2.4 and 2.6â€‰kÎ©, with a <100â€‰Î© (<1% of the resistance of Cr3Te4) smooth change of the resistance around the coercive field. The resistance variation around the coercive field is about 104 times smaller than the resistance change observed in the STJ, suggesting that the tunnelling conductance across the STJ is dominated by vertical transport across the superlattices and the serial resistance of the lateral transport through the Cr3Te4 nanoplate is negligible. d,e, Magnetic-field-dependent tunnelling current measurements of an intrinsic H-TaS2/Cr3Te4 (d) and a rac-MBA/H-TaS2/Cr3Te4 device (e), respectively. Here rac-MBA is the racemic mixture of R-MBA and S-MBA and the bias voltage applied is 0.1â€‰V. The intrinsic H-TaS2/Cr3Te4 device showed around three orders of magnitude higher current than that of the CMIS device, which is not surprising because both Cr3Te4 and TaS2 are either metal or semimetal. The device with rac-MBA/H-TaS2 intercalation superlattice showed a similar current level to that of the CMIS devices. In both cases, the tunnelling magnetoresistance experiments do not show apparent changes with magnetic field, which is clearly different from that with the CMIS devices.


Extended Data Fig. 5 Comparison between 2-terminal and 4-terminal measurements.
a,b Schematic drawing of the 2-terminal and 4-terminal measurement set-ups, respectively. c, Iâ€“V measurements of the 2-terminal and 4-terminal configurations under different magnetic field directions. d, Magnetic-field-dependent tunnelling conductance determined from the 2-terminal and 4-terminal configurations at the bias of 0.1â€‰V. 2T, 2-terminal; 4T, 4-terminal. Our 4-terminal and 2-terminal measurements essentially gave the same results, indicating negligible contribution from the contact resistance or the series resistance from the Cr3Te4 and H-TaS2. Compared with the overall resistance of the CMIS junction (typically larger than 10â€‰MÎ© at 10â€‰K), the contribution from the contact and series resistance is estimated to be only about 0.1% of the total measured resistance in the 2-terminal measurement and, thus, would not affect our interpretation.


Extended Data Fig. 6 Bias-dependent magnetoresistance ratio measured at different temperatures.
aâ€“d, Bias-dependent Iâ€“V at different temperatures. e,f, The corresponding bias-dependent magnetoresistance ratio MR%. The MR% values at the low-bias regime (<0.050â€‰V) are omitted, which cannot be reliably determined owing to low tunnelling current.


Extended Data Fig. 7 Further temperature-dependent studies for MBA/H-TaS2 STJ devices.
a, Additional temperature-dependent curves for S-MBA/H-TaS2 STJ devices. Data were taken on the same device as shown in Figs. 4d,f andÂ 5. b, The corresponding temperature-dependent conductance of the high current state and the low current state. c, Temperature-dependent GSI. The black dashed line is the fitting between 50â€‰K and 300â€‰K with the activation function of \({G}_{{\rm{SI}}}(T){{=G}_{0}{\rm{e}}}^{\frac{-{E}_{{\rm{A}}}}{{k}_{{\rm{B}}}T}}\), in which G0 is a normalization factor and kB is the Boltzmann constant. The resulting activation energy EAâ€‰=â€‰12â€‰meV. d, Temperature-dependent conductance of the high current state and the low current state. Data were taken on the same device as shown in Fig. 4c,e for R-MBA/H-TaS2 CMIS. e, Temperature-dependent GSI. The black dashed line is the fitting with the Arrhenius function, which yields an activation energy EAâ€‰=â€‰16â€‰meV. The activation energy is slightly higher than the S-MBA/H-TaS2 CMIS, which is consistent with the smaller conductivity observed in this device.


Extended Data Fig. 8 Temperature-dependent polarization for different devices.
The temperature-dependent polarization shows a similar trend between different devices, in which the polarization reduces with increasing temperature. Device 1 and Device 2 are reported in Fig. 4c,d, respectively.


Extended Data Table 1 Comparison of the CISS-induced polarization ratio measured with different methodsFull size table


Extended Data Table 2 Comparison of the CISS-induced magnetoresistance (MR%) and polarization ratio measured through the magnetic field sweeping loop in the magnetic tunnelling deviceComparison of the CISS-induced magnetoresistance (MR%) and polarization ratio measured through the magnetic field sweeping loop in the magnetic tunnelling deviceFull size table
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