Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis and target annotation of the alkaloid GB18

Abstract

Ingestion of alkaloid metabolites from the bark of Galbulimima (GB) sp. leads to psychotropic and excitatory effects in humans1,2,3,4. Limited, variable supply of GB alkaloids5, however, has impeded their biological exploration and clinical development6. Here we report a solution to the supply of GB18, a structural outlier and putative psychotropic principle of Galbulimima bark. Efficient access to its challenging tetrahedral attached-ring motif required the development of a ligand-controlled endo-selective cross-electrophile coupling and a diastereoselective hydrogenation of a rotationally dynamic pyridine. Reliable, gram-scale access to GB18 enabled its assignment as a potent antagonist of κ- and μ-opioid receptors—the first new targets in 35 years—and lays the foundation to navigate and understand the biological activity of Galbulimima metabolites.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis of structure and synthesis.
Fig. 2: Entry into the GB18 core.
Fig. 3: Completion of rac-1 on gram scale.
Fig. 4: Identification of high potency target receptors of GB18.

Data availability

All data are made available in the main text or the Supplementary Information, including experimental procedures, copies of NMR spectra and X-ray structure reports. Details regarding materials and methods for all biological assays are available on the PDSP website https://pdsp.unc.edu/ims/investigator/web/. Structural parameters are available from the Cambridge Crystallographic Data Centre (CCDC) under the following reference numbers: SI-2, 2099462; 6, 2096777; 8, 2156368; 3, 2156367; endo-2, 2096779; endo-2·HCl, 2101251; exo-2, 2099728; 11·H2O, 2105522; 12·(CH2Cl2)0.5, 2145022; 14, 2118272; rac-1, 2143708; (+)-1, 2149782; (−)-1, 2086615; ent-2-epi-6-epi-1·HCl, 2099978; L8·HCl·H2O, 2105525.

Code availability

Code used to generate Fig. 4c,d is available in the Supplementary Information (page 72).

References

  1. Thomas, B. Galbulimima belgraveana (F. Muell) Sprague, galbulimima agara. Eleusis J. Psychoact. Plants Compd. 2, 82–88 (1999).

    Google Scholar 

  2. Thomas, B. Psychoactive properties of Galbulimima bark. J. Psychoact. Drugs 37, 109–111 (2005).

    Article  Google Scholar 

  3. Thomas, B. Galbulimima bark and ethnomedicine in Papua New Guinea. P. N. G. Med. J. 49, 57–59 (2006).

    ADS  PubMed  Google Scholar 

  4. Thomas, B. Psychoactive plant use in Papua New Guinea. Sci. New Guin. 25, 33–59 (2000).

    Google Scholar 

  5. Binns, S. et al. The chemical constituents of Galbulimima species. Aust. J. Chem. 18, 569–573 (1965).

    Article  CAS  Google Scholar 

  6. Rinner, U. Galbulimima alkaloids. Alkaloids Chem. Biol. 78, 109–166 (2017).

    Article  CAS  Google Scholar 

  7. Lan, P., Herlt, A. J., Willis, A. C., Taylor, W. C. & Mander, L. N. Structures of new alkaloids from rain forest trees Galbulimima belgraveana and Galbulimima baccata in Papua New Guinea, Indonesia, and Northern Australia. ACS Omega 3, 1912–1921 (2018).

    Article  CAS  Google Scholar 

  8. Chaudhary, N. K., Taylor, W. C., Mander, L. N. & Karuso, P. Isolation and structure elucidation of additional alkaloids from the tropical rainforest tree Galbulimima baccata. J. Nat. Prod. 84, 2525–2535 (2021).

    Article  CAS  Google Scholar 

  9. Collins, D. J., Culvenor, C. C. J., Lamberton, J. A., Loder, J. W. & Price, J. R. in Plants for Medicines 71–106 (CSIRO, 1990).

  10. Anwar-ul, S., Gilani, H. & Coblin, L. B. The cardio-selectivity of himbacine: a muscarine receptor antagonist. Naunyn Schmiedebergs Arch. Pharmacol. 332, 16–20 (1986).

    Article  CAS  Google Scholar 

  11. Chackalamannil, S., Doller, D., McQuade, R. & Ruperto, V. Himbacine analogs as muscarinic receptor antagonists––effects of tether and heterocyclic variations. Bioorg. Med. Chem. Lett. 14, 3967–3970 (2004).

    Article  CAS  Google Scholar 

  12. Sheardown, M. J. Muscarinic M1 receptor agonists and M2 receptor antagonists as therapeutic targets in Alzheimer’s disease. Expert Opin. Therap. Patents 12, 863–870 (2002).

    Article  CAS  Google Scholar 

  13. WoldeMussie, E. & Ruiz, G. Method for reducing intraocular pressure in the mammalian eye by administration of muscarine antagonists. US patent 5716952 (1998).

  14. Ritchie, E. & Taylor, W. C. Chapter 14 The Galbulimima alkaloids. Alkaloids Chem. Physiol. 9, 529–543 (1967).

  15. Bradford, T. A. et al. The structures of four new himbacine-like Galbulimima alkaloids. Tetrahedron Lett. 52, 188–191 (2011).

    Article  CAS  Google Scholar 

  16. Böttcher, T. An additive definition of molecular complexity. J. Chem. Inf. Model. 56, 462–470 (2016).

    Article  Google Scholar 

  17. Larson, K. K. & Sarpong, R. Total synthesis of alkaloid (±)-G. B. 13 using a Rh(I)-catalyzed ketone hydroarylation and late-stage pyridine reduction. J. Am. Chem. Soc. 131, 13244–13245 (2009).

    Article  CAS  Google Scholar 

  18. Landwehr, E. M. et al. Concise syntheses of GB22, GB13 and himgaline by cross-coupling and complete reduction. Science 375, 1270–1274 (2022).

    Article  ADS  CAS  Google Scholar 

  19. Klix, R. C. & Bach, R. D. 1,2-Carbonyl migrations in organic synthesis. An approach to the perhydroindanones. J. Org. Chem. 52, 580–586 (1987).

    Article  CAS  Google Scholar 

  20. Torii, S., Okumoto, H., Nakayasu, S. & Kotani, T. Hydrogenolysis of α,β-epoxyketone and ester to aldol in Pd(0)/HCOOH/Et3N and H2/Pd/C reduction media. Chem. Lett. 18, 1975–1978 (1989).

    Article  Google Scholar 

  21. Danheiser, R. L., Carini, D. J. & Basak, A. (Trimethylsilyl)cyclopentene annulation: a regiocontrolled approach to the synthesis of five-membered rings. J. Am. Chem. Soc. 103, 1604–1606 (1981).

    Article  CAS  Google Scholar 

  22. Ma, X., Dang, H., Rose, J. A., Rablen, P. & Herzon, S. B. Hydroheteroarylation of unactivated alkenes using N-methoxyheteroarenium salts. J. Am. Chem. Soc. 139, 5998–6007 (2017).

    Article  CAS  Google Scholar 

  23. Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).

    Article  CAS  Google Scholar 

  24. Blackburn, J. M. & Roizen, J. L. Catalytic strategies to convert 2‐halopyridines to 2-alkylpyridines. Asian J. Org. Chem. 8, 920–930 (2019).

    Article  CAS  Google Scholar 

  25. Nimmagadda, S. K. et al. Development and execution of an Ni(II)-catalyzed reductive cross-coupling of substituted 2-chloropyridine and ethyl 3-chloropropanoate. Org. Process Res. Dev. 24, 1141–1148 (2020).

    Article  CAS  Google Scholar 

  26. Everson, D. A. & Weix, D. J. Cross-electrophile coupling: principles of reactivity and selectivity. J. Org. Chem. 79, 4793–4798 (2014).

    Article  CAS  Google Scholar 

  27. Poremba, K. E., Dibrell, S. E. & Reisman, S. E. Nickel-catalyzed enantioselective reductive cross-coupling reactions. ACS Catal. 10, 8237–8246 (2020).

    Article  CAS  Google Scholar 

  28. Zhang, P., Le, C. & Macmillan, D. W. C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 138, 8084–8087 (2016).

    Article  CAS  Google Scholar 

  29. Hansen, E. C., Li, C., Yang, S., Pedro, D. & Weix, D. J. Coupling of challenging heteroaryl halides with alkyl halides via nickel-catalyzed cross-electrophile coupling. J. Org. Chem. 82, 7085–7092 (2017).

    Article  CAS  Google Scholar 

  30. Anka-Lufford, L. L., Huihui, K. M. M., Gower, N. J., Ackerman, L. K. G. & Weix, D. J. Nickel-catalyzed cross-electrophile coupling with organic reductants in non-amide solvents. Chem. Eur. J. 22, 11564–11567 (2016).

    Article  CAS  Google Scholar 

  31. Charboneau, D. J. et al. Tunable and practical homogeneous organic reductants for cross-electrophile coupling. J. Am. Chem. Soc. 143, 21024–21036 (2021).

    Article  CAS  Google Scholar 

  32. Green, S. A., Huffman, T. R., McCourt, R. O., van der Puyl, V. & Shenvi, R. A. Hydroalkylation of olefins to form quaternary carbons. J. Am. Chem. Soc. 141, 7709–7714 (2019).

    Article  CAS  Google Scholar 

  33. Shevick, S. L., Obradors, C. & Shenvi, R. A. Mechanistic interrogation of Co/Ni-dual catalyzed hydroarylation. J. Am. Chem. Soc. 140, 12056–12068 (2018).

    Article  CAS  Google Scholar 

  34. Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).

    Article  CAS  Google Scholar 

  35. Hansen, E. C. et al. New ligands for nickel catalysis from diverse pharmaceutical heterocycle libraries. Nat. Chem. 8, 1126–1130 (2016).

    Article  CAS  Google Scholar 

  36. Boger, D. L. The difference a single atom can make: synthesis and design at the chemistry−biology interface. J. Org. Chem. 82, 11961–11980 (2017).

    Article  CAS  Google Scholar 

  37. Glorius, F., Spielkamp, N., Holle, S., Goddard, R. & Lehmann, C. W. Efficient asymmetric hydrogenation of pyridines. Angew. Chem. Int. Ed. 43, 2850–2852 (2004).

    Article  CAS  Google Scholar 

  38. Welin, E. R. et al. Concise total syntheses of (−)-jorunnamycin A and (−)-jorumycin enabled by asymmetric catalysis. Science 363, 270–275 (2019).

    Article  ADS  CAS  Google Scholar 

  39. Horii, Z. et al. Synthesis and stereochemistry in B/C ring juncture of lactamcarbinol A, a degradation product of securinine. Chem. Pharm. Bull. 13, 22–26 (1965).

    Article  ADS  CAS  Google Scholar 

  40. Besnard, J. et al. Automated design of ligands to polypharmacological profiles. Nature 492, 215–220 (2012).

    Article  ADS  CAS  Google Scholar 

  41. Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).

    Article  CAS  Google Scholar 

  42. Stevens, R. C. et al. The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nat. Rev. Drug Discov. 12, 25–34 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ki determinations, receptor-binding profiles, agonist and antagonist functional data were generously provided by the National Institute of Mental Health's Psychoactive Drug Screening Program, contract no. HHSN-271-2018-00023-C (NIMH PDSP). The NIMH PDSP is directed by B. L. Roth at the University of North Carolina at Chapel Hill and Project Officer J. Driscoll at NIMH, Bethesda. We thank J. Chen, B. Sanchez and Q. N. Wong for assistance with separations and analysis. M. Gembicky, E. Samolova, J. Bailey and the entire UCSD Crystallography Facility are acknowledged for X-ray crystallographic analysis. L. Pasternack and D.-H. Huang are acknowledged for assistance with NMR spectroscopy. We thank S. W. M. Crossley, M. D. Palkowitz, B. P. Smith and G. Tong for proofreading. Support was provided by the National Institutes of Health (R35 GM122606; S10 OD025208), the National Science Foundation (CHE 1856747) and the Skaggs Graduate School (fellowship to S.W.).

Author information

Authors and Affiliations

Authors

Contributions

R.A.S. and S.W. conceived the project. R.A.S. directed the research. R.A.S. and S.W. composed the manuscript and S.W. compiled the supplementary information. S.W. executed all the experimental work. R.A.S. analysed data and parameterized the synthesis.

Corresponding author

Correspondence to Ryan A. Shenvi.

Ethics declarations

Competing interests

A provisional patent has been filed by S.W. and R.A.S.: US patent application no. 63/301,677.

Peer review information

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures, spectral data, biological assay data, chemical informatics data and code, references and crystallographic data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, S., Shenvi, R.A. Synthesis and target annotation of the alkaloid GB18. Nature 606, 917–921 (2022). https://doi.org/10.1038/s41586-022-04840-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04840-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research