Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reply to: Concerns of assuming linearity in the reconstruction of thermal maxima

The Original Article was published on 27 July 2022

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Impact of nonlinearities on Western Pacific Warm Pool SSTs.
Fig. 2: PMIP global versus tropical (40° S–40° N) mean annual temperature (area weighted) change from 6 ka to 0 ka for PMIP2 (13 models), PMIP3 (15 models) and PMIP4 (15 models).

Data availability

The datasets used in this study are available in the NOAA Database, World Data Service for Paleoclimatology at https://www.ncdc.noaa.gov/paleo/study/31752.

Code availability

A MATLAB code that implements the SAT method and the analysis presented in Fig. 1 is available on GitHub at https://github.com/sambova/SAT.

References

  1. Bova, S., Rosenthal, Y., Liu, Z., Godad, S. P. & Yan, M. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature https://doi.org/10.1038/s41586-020-03155-x (2021).

  2. Kaufman, D. et al. Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data 7, 201 (2020).

    CAS  Article  Google Scholar 

  3. Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

    ADS  CAS  Article  Google Scholar 

  4. Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4–CMIP6 midHolocene simulations. Clim. Past Discuss. 2020, 1–35 (2020).

    Google Scholar 

  6. Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).

    ADS  CAS  Article  Google Scholar 

  7. Rodriguez, L. G. et al. Mid-Holocene, coral-based sea surface temperatures in the western tropical Atlantic. Paleoceanogr. Paleoclimatol. 34, 1234–1245 (2019).

    ADS  Article  Google Scholar 

  8. Timmermann, A., Sachs, J. & Timm, O. E. Assessing divergent SST behavior during the last 21 ka derived from alkenones and G. ruber-Mg/Ca in the equatorial Pacific. Paleoceanography 29, 680–696 (2014).

    ADS  Article  Google Scholar 

  9. Leduc, G., Schneider, R., Kim, J.-H. & Lohmann, G. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quat. Sci. Rev. 29, 989–1004 (2010).

    ADS  Article  Google Scholar 

  10. Liu, Y. et al. A possible role of dust in resolving the holocene temperature conundrum. Sci. Rep. 8, 4434 (2018).

    ADS  Article  Google Scholar 

  11. Park, H.-S., Kim, S.-J., Stewart, A. L., Son, S.-W. & Seo, K.-H. Mid-Holocene Northern Hemisphere warming driven by Arctic amplification. Sci. Adv. 5, eaax8203 (2019).

    ADS  Article  Google Scholar 

  12. Laepple, T., Shakun, J., He, F. & Marcott, S. Concerns of assuming linearity in the reconstruction of thermal maxima. Nature https://doi.org/10.1038/s41586-022-04831-w (2022).

  13. Schneider, B., Leduc, G. & Park, W. Disentangling seasonal signals in Holocene climate trends by satellite–model–proxy integration. Paleoceanography https://doi.org/10.1029/2009PA001893 (2010).

  14. Lohmann, G. et al. in Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC) (eds Schulz, M. & Paul, A.) 31–35 (Springer, 2015).

  15. Lohmann, G., Pfeiffer, M., Laepple, T., Leduc, G. & Kim, J.-H. A model–data comparison of the Holocene global sea surface temperature evolution. Clim. Past 9, 1807–1839 (2013).

    Article  Google Scholar 

  16. Laepple, T. & Lohmann, G. Seasonal cycle as template for climate variability on astronomical timescales. Paleoceanography https://doi.org/10.1029/2008pa001674 (2009).

  17. Sachs, J. P. Cooling of Northwest Atlantic slope waters during the Holocene. Geophys. Res. Lett. 34, https://doi.org/10.1029/2006GL028495 (2007).

  18. Clement, A. C., Hall, A. & Broccoli, A. J. The importance of precessional signals in the tropical climate. Clim. Dyn. 22, 327–341 (2004).

    Article  Google Scholar 

  19. Huang, B. et al. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939 (2021).

    ADS  Article  Google Scholar 

  20. Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    ADS  Article  Google Scholar 

  21. Huybers, P. & Eisenman, I. Integrated Summer Insolation Calculations IGBP PAGES/World Data Center for Paleoclimatology Data ContributionSeries 2006-079 (NOAA/NCDC Paleoclimatology Program, Boulder CO,USA, 2006).

  22. Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).

  23. Mann, M. E., Schmidt, G. A., Miller, S. K. & LeGrande, A. N. Potential biases in inferring Holocene temperature trends from long-term borehole information. Geophys. Res. Lett. https://doi.org/10.1029/2008GL036354 (2009).

  24. Bader, J. et al. Global temperature modes shed light on the Holocene temperature conundrum. Nat. Commun. 11, 4726 (2020).

    ADS  CAS  Article  Google Scholar 

  25. Locarini, R. A. et al. World Ocean Atlas 2013, Volume 1: Temperature (NOAA Atlas NESDIS, 2013).

Download references

Acknowledgements

Funding for this research was provided by NSF grants OCE-1834208 and OCE-1810681, the NSF-sponsored US Science Support Program for IODP, the Institute of Earth, Ocean, and Atmospheric Sciences at Rutgers University, the Chinese NSF 41630527, the School of Geography, Nanjing Normal University, and the USIEF-Fulbright Program.

Author information

Authors and Affiliations

Authors

Contributions

S.B., Y.R., Z.L., M.Y., A.J.B., S.P.G. and C.Z. contributed to conception of the presented ideas. S.B. wrote the first manuscript draft. All authors provided review and editing. Three authors not on the original paper were added to the author list. C.Z. provided additional analysis of model results. A.J.B. provided critical feedback and discussion. W.Z. provided the analysis of the PMIP global versus tropical mean annual temperature shown in Fig. 2.

Corresponding author

Correspondence to Samantha Bova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bova, S., Rosenthal, Y., Liu, Z. et al. Reply to: Concerns of assuming linearity in the reconstruction of thermal maxima. Nature 607, E15–E18 (2022). https://doi.org/10.1038/s41586-022-04832-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04832-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing