Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optical observation of single spins in silicon


The global quantum internet will require long-lived, telecommunications-band photon–matter interfaces manufactured at scale1. Preliminary quantum networks based on photon–matter interfaces that meet a subset of these demands are encouraging efforts to identify new high-performance alternatives2. Silicon is an ideal host for commercial-scale solid-state quantum technologies. It is already an advanced platform within the global integrated photonics and microelectronics industries, as well as host to record-setting long-lived spin qubits3. Despite the overwhelming potential of the silicon quantum platform, the optical detection of individually addressable photon–spin interfaces in silicon has remained elusive. In this work, we integrate individually addressable ‘T centre’ photon–spin qubits in silicon photonic structures and characterize their spin-dependent telecommunications-band optical transitions. These results unlock immediate opportunities to construct silicon-integrated, telecommunications-band quantum information networks.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrating and optically coupling the T centre.
Fig. 2: Single centres in silicon.
Fig. 3: Single-spin optical initialization and readout.

Data availability

Data are available on request. Correspondence and requests for materials should be addressed to S.S.


  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Delteil, A., Sun, Z., Fält, S. & Imamoĝlu, A. Realization of a cascaded quantum system: heralded absorption of a single photon qubit by a single-electron charged quantum dot. Phys. Rev. Lett. 118, 177401 (2017).

    Article  ADS  PubMed  Google Scholar 

  6. Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  7. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Raha, M. et al. Optical quantum nondemolition measurement of a single rare earth ion qubit. Nat. Commun. 11, 1605 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tian, Z. et al. Optically addressing single rare-earth ions in a nanophotonic cavity. Phys. Rev. Lett. 121, 183603 (2018).

    Article  Google Scholar 

  11. Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Hayee, F. et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 19, 534–539 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  CAS  Google Scholar 

  14. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  ADS  CAS  Google Scholar 

  15. Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Wolfowicz, G. et al. Vanadium spin qubits as telecom quantum emitters in silicon carbide. Sci. Adv. 6, eaaz1192 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nat. Commun. 4, 1819 (2013).

    Article  ADS  PubMed  Google Scholar 

  18. Lukin, M. D. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics 14, 330–334 (2020).

    Article  ADS  CAS  Google Scholar 

  19. Akhlaghi, M. K., Schelew, E. & Young, J. F. Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation. Nat. Commun. 6, 8233 (2015).

    Article  ADS  PubMed  Google Scholar 

  20. Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

    Article  ADS  Google Scholar 

  21. Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11, 143–147 (2012).

    Article  ADS  CAS  Google Scholar 

  23. Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Maune, B. M. et al. Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 481, 344–347 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Büch, H., Mahapatra, S., Rahman, R., Morello, A. & Simmons, M. Y. Spin readout and addressability of phosphorus-donor clusters in silicon. Nat. Commun. 4, 2017 (2013).

    Article  ADS  PubMed  Google Scholar 

  27. Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666–670 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Mi, X. et al. A coherent spin-photon interface in silicon. Nature 555, 599–603 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Crippa, A. et al. Gate-reflectometry dispersive readout and coherent control of a spin qubit in silicon. Nat. Commun. 10, 2776 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yin, C. et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91–94 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Redjem, W. et al. Single artificial atoms in silicon emitting at telecom wavelengths. Nat. Electron. 3, 738–743 (2020).

    Article  CAS  Google Scholar 

  33. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  ADS  CAS  Google Scholar 

  34. DeAbreu, A. et al. Characterization of the Si: Se+ spin-photon interface. Phys. Rev. Appl. 11, 44036 (2019).

    Article  CAS  Google Scholar 

  35. Kenyon, A. J. Erbium in silicon. Semiconduct. Sci. Technol. 20, R65–R84 (2005).

  36. Bergeron, L. et al. Silicon-Integrated telecommunications photon-spin interface. PRX Quantum 1, 20301 (2020).

    Article  Google Scholar 

  37. MacQuarrie, E. R. et al. Generating T centres in photonic silicon-on-insulator material by ion implantation. New J. Phys. 23, 103008 (2021).

    Article  ADS  CAS  Google Scholar 

  38. Zhang, G., Yuan, C., Chou, J. P. & Gali, A. Material platforms for defect qubits and single-photon emitters. Appl. Phys. Rev. 7, 31308 (2020).

    Article  CAS  Google Scholar 

  39. Safonov, A. N., Lightowlers, E. C. & Davies, G. Carbon-hydrogen deep level luminescence centre in silicon responsible for the T-line. Mater. Sci. Forum 196-201, 909–914 (1995).

    Article  CAS  Google Scholar 

  40. Chartrand, C. et al. Highly enriched Si 28 reveals remarkable optical linewidths and fine structure for well-known damage centers. Phys. Rev. B. 98, 195201 (2018).

    Article  ADS  CAS  Google Scholar 

  41. Durand, A. et al. Broad diversity of near-infrared single-photon emitters in silicon. Phys. Rev. Lett. 126, 083602 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Li, L. et al. Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Lett. 15, 1493–1497 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  ADS  PubMed  Google Scholar 

  44. Sangtawesin S. et al. Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy. Phys. Rev. X. 9, 031052 (2019).

  45. Anderson, C. P. et al. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science 366, 1255–1230 (2019).

    Article  ADS  Google Scholar 

  46. Van Dam, S. B. et al. Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing. Phys. Rev. B. 99, 161203 (2019).

  47. Wolfowicz, G. et al. Awschalom. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021).

    Article  ADS  CAS  Google Scholar 

  48. Ashida, K. et al. Ultrahigh-Q photonic crystal nanocavities fabricated by CMOS process technologies. Opt. Express 25, 18165 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Irion, E., Burger, N., Thonke, K. & Sauer, R. The defect luminescence spectrum at 0.9351 eV in carbon-doped heat-treated or irradiated silicon. J. Phys. C: Solid State Phys. 18, 5069–5082 (1985).

    Article  ADS  CAS  Google Scholar 

  50. Lambropoulos, P. & Petrosyan, D. Fundamentals of Quantum Optics and Quantum Information (Springer, 2007).

  51. Johansson, J. R., Nation, P. D. & Nori, F. QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760–1772 (2012).

    Article  ADS  CAS  Google Scholar 

  52. Beveratos, A. et al. Room temperature stable single-photon source. Euro. Phys. J. D. Atom. Mol. Opt. Plasma Phys. 18, 191–196 (2002).

    CAS  Google Scholar 

  53. Kitson, S. C., Jonsson, P., Rarity, J. G. & Tapster, P. R. Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity. Phys. Rev. A. 58, 620 (1998).

    Article  ADS  CAS  Google Scholar 

Download references


We thank C. Clément from Polytechnique Montréal for rapid thermal annealing of implanted samples. This work made use of the 4D LABS and Silicon Quantum Leap facilities supported by the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, Western Economic Diversification Canada and Simon Fraser University. This work was supported by the Canada Research Chairs program, the New Frontiers in Research Fund: Exploration, the Canadian Institute for Advanced Research Quantum Information Science program and Catalyst Fund, Le Fonds de recherche du Québec: Nature et technologies and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations



A.T.K.K., D.B.H. and S.S. designed the experiment and wrote the manuscript. A.T.K.K. and D.B.H. built the apparatus, measured single-centre spectra and analysed the data. M.K. and D.B.H. measured single spin lifetimes. N.A.B., A.T.K.K. and D.B.H. measured photon correlations. C.C., D.B.H., E.R.M. and S.R. developed the samples used in the study. J.R.K., N.R.L-H., J.S., M.R. and K.J.M. assisted in experiment design. C.B., L.B., A.D., N.A.B., S.R.H., J.K., M.K., D.W.M., T.S.R. and L.A.S. contributed to code development. M.L.W.T. advised on design and analysis. All authors participated in manuscript revision.

Corresponding author

Correspondence to Stephanie Simmons.

Ethics declarations

Competing interests

D.B.H., A.T.K.K., C.C., M.K., N.A.B., E.R.M., N.R.L-H., M.R., C.B., L.B., J.K., L.A.S., K.J.M., M.L.W.T. and S.S. are current or recent employees of and/or have a financial interest in Photonic Inc., a quantum technology company. J.R.K., J.S., S.R.H., D.W.M., T.S.R. and S.R. declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Confocal microscopy of micropucks.

(A) Confocal microscope image of micropucks, incrementing in radius from 250 nm (upper left) to 850 nm (bottom right), by integrating PL signal over λ > 1.33. (B) Simulated relative intensity (colour axis) collected by an NA = 0.7 microscope objective from a planar emitter at the micropuck centre as a function of wavelength and micropuck radius. (C) Simulated (solid) vs measured (dots) intensity of the T ZPL area (blue) and the integrated sideband intensity (red) in PL as a function of micropuck radius. Simulated data is plotted as relative intensity into the objective (right axis) and measured data is peak value normalized (left axis).

Extended Data Fig. 2 FDTD simulated emission from micropucks.

Collection efficiency (A and B), Purcell factor (C and D) and relative intensity (E and F) for a planar dipole in SOI (left column) and in a micropuck of varying radius (right column).

Extended Data Fig. 3 Single micropuck PL spectra.

The radius of each micropuck is given. Insets show zooms about the T and G centre ZPLs.

Extended Data Fig. 4 Single T centre excited state lifetime.

Fluorescence transient measured after resonant excitation. An exponential fit gives a lifetime of 802(7) ns.

Extended Data Fig. 5 FDTD simulated, spectrally weighted Purcell factor of a T centre in a micropuck.

(A) Single-wavelength Purcell factor for a planar dipole at the centre of a micropuck of varying radius, reproduced from Extended Data Fig. 2(D) for reference. (B) Purcell factor averaged over the T centre spectrum as a function of micropuck radius.

Extended Data Fig. 6 Sideband fluorescence autocorrelation measurements.

(A) Raw correlation histogram without background subtraction, normalized to the detection rate. (B) Background-subtracted correlation histogram with three fitted models.

Extended Data Table 1 Summary of simulated relative intensities
Extended Data Table 2 Summary of measured losses

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and References.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higginbottom, D.B., Kurkjian, A.T.K., Chartrand, C. et al. Optical observation of single spins in silicon. Nature 607, 266–270 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing