Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Turbulent cold flows gave birth to the first quasars

Abstract

How quasars powered by supermassive black holes formed less than a billion years after the Big Bang is still one of the outstanding problems in astrophysics, 20 years after their discovery1,2,3,4. Cosmological simulations suggest that rare cold flows converging on primordial haloes in low-shear environments could have created these quasars if they were 104–105 solar masses at birth, but could not resolve their formation5,6,7,8. Semi-analytical studies of the progenitor halo of a primordial quasar found that it favours the formation of such seeds, but could not verify if one actually appeared9. Here we show that a halo at the rare convergence of strong, cold accretion flows creates massive black holes seeds without the need for ultraviolet backgrounds, supersonic streaming motions or even atomic cooling. Cold flows drive violent, supersonic turbulence in the halo, which prevents star formation until it reaches a mass that triggers sudden, catastrophic baryon collapse that forms 31,000 and 40,000 solar-mass stars. This simple, robust process ensures that haloes capable of forming quasars by a redshift of z > 6 produce massive seeds. The first quasars were thus a natural consequence of structure formation in cold dark matter cosmologies, and not exotic, finely tuned environments as previously thought10,11,12,13,14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spherically averaged velocity profiles of the halo.
Fig. 2: Catastrophic baryon collapse in the halo at z = 25.7.
Fig. 3: Spherically averaged gas profiles of the halo.
Fig. 4: Evolution of the turbulent core.

Similar content being viewed by others

Data availability

The Enzo parameter files and initial conditions files generated by MUSIC that are required to perform the simulations are available at https://doi.org/10.5281/zenodo.5853118. The MUSIC input files required to generate the initial conditions are available at https://sites.google.com/site/latifmaastro/ics. The MESA inlist files required to evolve the two stars can be found at https://cococubed.com/mesa_market/inlists.html.

Code availability

The code used to produce our cosmological simulations, Enzo v.2.6, can be found at https://bitbucket.org/enzo/enzo-dev/tree/enzo-2.6.1. The MESA code used to evolve the two stars, v.12778, can be found at https://zenodo.org/record/3698354#.YgkaN-TfUlQ.

References

  1. Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey. II. Discovery of three additional quasars at z > 6. Astron. J. 125, 1649–1659 (2003).

    Article  ADS  Google Scholar 

  2. Mortlock, D. J. et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Volonteri, M. The formation and evolution of massive black holes. Science 337, 544 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. Lett. 907, L1 (2021).

    Article  ADS  CAS  Google Scholar 

  5. Tenneti, A., Di Matteo, T., Croft, R., Garcia, T. & Feng, Y. The descendants of the first quasars in the BlueTides simulation. Mon. Not. Royal Astron. Soc. 474, 597–603 (2018).

    Article  ADS  CAS  Google Scholar 

  6. Smidt, J., Whalen, D. J., Johnson, J. L., Surace, M. & Li, H. Radiation hydrodynamical simulations of the first quasars. Astrophys. J. 865, 126 (2018).

    Article  ADS  Google Scholar 

  7. Huang, K.-W., Di Matteo, T., Bhowmick, A. K., Feng, Y. & Ma, C.-P. BLUETIDES simulation: establishing black hole–galaxy relations at high redshift. Mon. Not. Royal Astron. Soc. 478, 5063–5073 (2018).

    Article  ADS  Google Scholar 

  8. Zhu, Q. et al. The formation of the first quasars. I. The black hole seeds, accretion and feedback models. Preprint at https://arxiv.org/abs/2012.01458 (2020).

  9. Lupi, A., Haiman, Z. & Volonteri, M. Forming massive seed black holes in high-redshift quasar host progenitors. Mon. Not. Royal Astron. Soc. 503, 5046–5060 (2021) .

    Article  ADS  CAS  Google Scholar 

  10. Alexander, T. & Natarajan, P. Rapid growth of seed black holes in the early universe by supra-exponential accretion. Science 345, 1330–1333 (2014) .

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Latif, M. A., Bovino, S., Grassi, T., Schleicher, D. R. G. & Spaans, M. How realistic UV spectra and X-rays suppress the abundance of direct collapse black holes. Mon. Not. Royal Astron. Soc. 446, 3163–3177 (2015) .

    Article  ADS  CAS  Google Scholar 

  12. Hirano, S., Hosokawa, T., Yoshida, N. & Kuiper, R. Supersonic gas streams enhance the formation of massive black holes in the early universe. Science 357, 1375–1378 (2017) .

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  13. Woods, T. E., Heger, A., Whalen, D. J., Haemmerlé, L. & Klessen, R. S. On the maximum mass of accreting primordial supermassive stars. Astrophys. J. 842, L6 (2017) .

    Article  ADS  Google Scholar 

  14. Woods, T. E., Patrick, S., Elford, J. S., Whalen, D. J. & Heger, A. On the evolution of supermassive primordial stars in cosmological flows. Astrophys. J. 915, 110 (2021) .

    Article  ADS  CAS  Google Scholar 

  15. Feng, Y., Di Matteo, T., Croft, R. & Khandai, N. High-redshift supermassive black holes: accretion through cold flows. Mon. Not. Royal Astron. Soc. 440, 1865–1879 (2014) .

    Article  ADS  Google Scholar 

  16. Lupi, A. et al. High-redshift quasars and their host galaxies – I. Kinematical and dynamical properties and their tracers. Mon. Not. Royal Astron. Soc. 488, 4004–4022 (2019) .

    Article  ADS  CAS  Google Scholar 

  17. Valentini, M., Gallerani, S. & Ferrara, A. Host galaxies of high-redshift quasars: SMBH growth and feedback. Mon. Not. Royal Astron. Soc. 507, 1–26 (2021) .

    Article  ADS  Google Scholar 

  18. Li, Y. et al. Formation of z ~ 6 quasars from hierarchical galaxy mergers. Astrophys. J. 665, 187–208 (2007) .

    Article  ADS  Google Scholar 

  19. Wise, J. H. et al. Formation of massive black holes in rapidly growing pre-galactic gas clouds. Nature 566, 85–88 (2019) .

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Bromm, V. & Larson, R. B. The first stars. Ann. Rev. Astron. Astrophys. 42, 79–118 (2004) .

    Article  ADS  CAS  Google Scholar 

  21. Lodato, G. & Natarajan, P. Supermassive black hole formation during the assembly of pre-galactic discs. Mon. Not. Royal Astron. Soc. 371, 1813–1823 (2006) .

    Article  ADS  Google Scholar 

  22. Regan, J. A. & Haehnelt, M. G. Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures 10 000 K. Mon. Not. Royal Astron. Soc. 396, 343–353 (2009) .

    Article  ADS  Google Scholar 

  23. Patrick, S. J., Whalen, D. J., Elford, J. S. & Latif, M. A. The collapse of atomically-cooled primordial haloes. I. High Lyman–Werner backgrounds. Preprint at https://arxiv.org/abs/2012.11612 (2020).

  24. Surace, M. et al. On the detection of supermassive primordial stars. Astrophys. J. 869, L39 (2018).

    Article  ADS  CAS  Google Scholar 

  25. Whalen, D. J. et al. Finding direct-collapse black holes at birth. Astrophys. J. 897, L16 (2020) .

    Article  ADS  Google Scholar 

  26. Latif, M. A., Khochfar, S., Schleicher, D. & Whalen, D. J. Radiation hydrodynamical simulations of the birth of intermediate-mass black holes in the first galaxies. Mon. Not. Royal Astron. Soc. 508, 1756–1767 (2021) .

    Article  ADS  Google Scholar 

  27. Agarwal, B., Smith, B., Glover, S., Natarajan, P. & Khochfar, S. New constraints on direct collapse black hole formation in the early Universe. Mon. Not. Royal Astron. Soc. 459, 4209–4217 (2016) .

    Article  ADS  CAS  Google Scholar 

  28. Valiante, R., Agarwal, B., Habouzit, M. & Pezzulli, E. On the formation of the first quasars. Publ. Astron. Soc. Aust. 34, e031 (2017) .

    Article  ADS  Google Scholar 

  29. Di Matteo, T., Croft, R. A. C., Feng, Y., Waters, D. & Wilkins, S. The origin of the mostmassive black holes at high-z: BlueTides and the next quasar frontier. Mon. Not. Royal Astron. Soc. 467, 4243–4251 (2017) .

    Article  ADS  CAS  Google Scholar 

  30. Bryan, G. L. et al. ENZO: an adaptive mesh refinement code for astrophysics. Astrophys. J. Suppl. Ser. 211, 19 (2014).

    Article  ADS  Google Scholar 

  31. Efstathiou, G., Davis, M., White, S. D. M. & Frenk, C. S. Numerical techniques for large cosmological N-body simulations. Astrophys. J. Suppl. Ser. 57, 241–260 (1985).

    Article  ADS  Google Scholar 

  32. Couchman, H. M. P. Mesh-refined P3M – a fast adaptive N-body algorithm. Astrophys. J. 368, L23–L26 (1991).

    Article  ADS  Google Scholar 

  33. Anninos, P., Zhang, Y., Abel, T. & Norman, M. L. Cosmological hydrodynamics with multi-species chemistry and nonequilibrium ionization and cooling. New Astron. 2, 209–224 (1997).

    Article  ADS  CAS  Google Scholar 

  34. Woodward, P. & Colella, P. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Bryan, G. L., Norman, M. L., Stone, J. M., Cen, R. & Ostriker, J. P. A piecewise parabolic method for cosmological hydrodynamics. Comput. Phys. Commun. 89, 149–168 (1995).

    Article  ADS  CAS  MATH  Google Scholar 

  36. Toro, E. F., Spruce, M. & Speares, W. Restoration of the contact surface in the HLL–Riemann solver. Shock Waves 4, 25–34 (1994).

    Article  ADS  MATH  Google Scholar 

  37. Glover, S. C. O. & Abel, T. Uncertainties in H2 and HD chemistry and cooling and their role in early structure formation. Mon. Not. Royal Astron. Soc. 388, 1627–1651 (2008).

    Article  ADS  CAS  Google Scholar 

  38. Ripamonti, E. & Abel, T. Fragmentation and the formation of primordial protostars: the possible role of collision-induced emission. Mon. Not. Royal Astron. Soc. 348, 1019–1034 (2004).

    Article  ADS  CAS  Google Scholar 

  39. Glover, S. C. O. Simulating the formation of massive seed black holes in the early Universe – I. An improved chemical model. Mon. Not. Royal Astron. Soc. 451, 2082–2096 (2015).

    Article  ADS  CAS  Google Scholar 

  40. Glover, S. C. O. Simulating the formation of massive seed black holes in the early Universe – II. Impact of rate coefficient uncertainties. Mon. Not. Royal Astron. Soc. 453, 2901–2918 (2015).

    Article  ADS  CAS  Google Scholar 

  41. Hahn, O. & Abel, T. Multi-scale initial conditions for cosmological simulations. Mon. Not. Royal Astron. Soc. 415, 2101–2121 (2011).

    Article  ADS  CAS  Google Scholar 

  42. Planck Collaboration et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  43. Khandai, N., Feng, Y., DeGraf, C., Di Matteo, T. & Croft, R. A. C. The formation of galaxies hosting z 6 quasars. Mon. Not. Royal Astron. Soc. 423, 2397–2406 (2012).

    Article  ADS  Google Scholar 

  44. Trenti, M., Santos, M. R. & Stiavelli, M. Where can we really find the first stars’ remnants today? Astrophys. J. 687, 1–6 (2008).

    Article  ADS  CAS  Google Scholar 

  45. Behroozi, P. S., Wechsler, R. H. & Wu, H.-Y. The ROCKSTAR phase-space temporal halo finder and the velocity offsets of cluster cores. Astrophys. J. 762, 109 (2013).

    Article  ADS  Google Scholar 

  46. Wise, J. H. Enzo-MRP-music. GitHub https://github.com/jwise77/enzo-mrp-music (2020).

  47. Federrath, C., Sur, S., Schleicher, D. R. G., Banerjee, R. & Klessen, R. S. A new JeansrResolution criterion for (M)HD simulations of self-gravitating gas: application to magnetic field amplification by gravity-driven turbulence. Astrophys. J. 731, 62 (2011).

    Article  ADS  Google Scholar 

  48. Latif, M. A., Schleicher, D. R. G., Schmidt, W. & Niemeyer, J. Black hole formation in the early Universe. Mon. Not. Royal Astron. Soc. 433, 1607–1618 (2013).

    Article  ADS  Google Scholar 

  49. Hennebelle, P. & Chabrier, G. Analytical theory for the initial mass function: CO clumps and prestellar cores. Astrophys. J. 684, 395–410 (2008).

    Article  ADS  CAS  Google Scholar 

  50. Federrath, C. The turbulent formation of stars. Phys. Today 71, 38–42 (June, 2018).

    Article  CAS  Google Scholar 

  51. Stacy, A., Bromm, V. & Loeb, A. Rotation speed of the first stars. Mon. Not. Royal Astron. Soc. 413, 543–553 (2011).

    Article  ADS  Google Scholar 

  52. Turk, M. J. et al. yt: a multi-code analysis toolkit for astrophysical simulation data. Astrophys. J. Suppl. Ser. 192, 9 (2011).

    Article  ADS  Google Scholar 

  53. Machacek, M. E., Bryan, G. L. & Abel, T. Simulations of pregalactic structure formation with radiative feedback. Astrophys. J. 548, 509–521 (2003).

    Article  ADS  Google Scholar 

  54. Greif, T. H. et al. Simulations on a moving mesh: the clustered formation of Population III protostars. Astrophys. J. 737, 75 (2011).

    Article  ADS  Google Scholar 

  55. Becerra, F., Greif, T. H., Springel, V. & Hernquist, L. E. Formation of massive protostars in atomic cooling haloes. Mon. Not. Royal Astron. Soc. 446, 2380–2393 (2015).

    Article  ADS  CAS  Google Scholar 

  56. Becerra, F., Marinacci, F., Bromm, V. & Hernquist, L. E. Assembly of supermassive black hole seeds. Mon. Not. Royal Astron. Soc. 480, 5029–5045 (2018).

    ADS  CAS  Google Scholar 

  57. Hosokawa, T. et al. Formation of massive primordial stars: intermittent UV feedback with episodic mass accretion. Astrophys. J. 824, 119 (2016).

    Article  ADS  Google Scholar 

  58. Latif, M. A. & Schleicher, D. R. G. Magnetic fields in primordial accretion disks. Astron. Astrophys. 585, A151 (2016).

    Article  ADS  Google Scholar 

  59. Inayoshi, K. & Haiman, Z. Does disc fragmentation prevent the formation of supermassive stars in protogalaxies? Mon. Not. Royal Astron. Soc. 445, 1549–1557 (2014).

    Article  ADS  CAS  Google Scholar 

  60. Regan, J. A. & Downes, T. P. Rise of the first supermassive stars. Mon. Not. Royal Astron. Soc. 478, 5037–5049 (2018).

    Article  ADS  CAS  Google Scholar 

  61. Regan, J. A. et al. The formation of very massive stars in early galaxies and implications for intermediate mass black holes. Open J. Astrophys. 3, 15 (2020).

    Article  Google Scholar 

  62. Latif, M. A., Whalen, D. & Khochfar, S. The birth mass function of Population III stars. Astrophys. J. 925, 28 (2022).

  63. Krumholz, M. R., McKee, C. F. & Klein, R. I. Embedding Lagrangian sink particles in Eulerian grids. Astrophys. J. 611, 399–412 (2004).

    Article  ADS  Google Scholar 

  64. Federrath, C., Banerjee, R., Clark, P. C. & Klessen, R. S. Modeling collapse and accretion in turbulent gas clouds: implementation and comparison of sink particles in AMR and SPH. Astrophys. J. 713, 269–290 (2010).

    Article  ADS  Google Scholar 

  65. Latif, M. A., Schleicher, D. R. G., Schmidt, W. & Niemeyer, J. C. The characteristic black hole mass resulting from direct collapse in the early Universe. Mon. Not. Royal Astron. Soc. 436, 2989–2996 (2013).

    Article  ADS  Google Scholar 

  66. Tseliakhovich, D. & Hirata, C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82, 083520 (2010).

    Article  ADS  Google Scholar 

  67. Machacek, M. E., Bryan, G. L. & Abel, T. Effects of a soft X-ray background on structure formation at high redshift. Mon. Not. Royal Astron. Soc. 338, 273–286 (2003).

    Article  ADS  Google Scholar 

  68. Aykutalp, A., Wise, J. H., Spaans, M. & Meijerink, R. Songlines from direct collapse seed black holes: effects of X-rays on black hole growth and stellar populations. Astrophys. J. 797, 139 (2014).

    Article  ADS  Google Scholar 

  69. Aykutalp, A., Barrow, K. S. S., Wise, J. H. & Johnson, J. L. Induced metal-free star formation around a massive black hole seed. Astrophys. J. 898, L53 (2020).

    Article  ADS  CAS  Google Scholar 

  70. Chon, S. & Omukai, K. Supermassive star formation via super competitive accretion in slightly metal-enriched clouds. Mon. Not. Royal Astron. Soc. 494, 2851–2860 (2020).

    Article  ADS  CAS  Google Scholar 

  71. Latif, M. A. & Volonteri, M. Assessing inflow rates in atomic cooling haloes: implications for direct collapse black holes. Mon. Not. Royal Astron. Soc. 452, 1026–1044 (2015).

    Article  ADS  CAS  Google Scholar 

  72. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    Article  ADS  Google Scholar 

  73. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    Article  ADS  Google Scholar 

  74. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).

    Article  ADS  Google Scholar 

  75. Henyey, L., Vardya, M. S. & Bodenheimer, P. Studies in stellar evolution. III. The calculation of model envelopes. Astrophys. J. 142, 841 (1965).

    Article  ADS  Google Scholar 

  76. Rogers, F. J. & Nayfonov, A. Updated and expanded OPAL equation-of-state tables: implications for helioseismology. Astrophys. J. 576, 1064–1074 (2002).

    Article  ADS  CAS  Google Scholar 

  77. Saumon, D., Chabrier, G. & van Horn, H. M. An equation of state for low-mass stars and giant planets. Astrophys. J. Suppl. Ser. 99, 713 (1995).

    Article  ADS  CAS  Google Scholar 

  78. Timmes, F. X. & Swesty, F. D. The accuracy, consistency, and speed of an electron-positron equation of state based on table interpolation of the Helmholtz free energy. Astrophys. J. Suppl. Ser. 126, 501–516 (2000).

    Article  ADS  Google Scholar 

  79. Potekhin, A. Y. & Chabrier, G. Thermodynamic functions of dense plasmas: analytic approximations for astrophysical applications. Contrib. Plasma Phys. 50, 82–87 (2010).

    Article  ADS  CAS  Google Scholar 

  80. Chandrasekhar, S. The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity. Astrophys. J. 140, 417 (1964).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Haemmerlé, L., Woods, T. E., Klessen, R. S., Heger, A. & Whalen, D. J. On the rotation of supermassive stars. Astrophys. J. 853, L3 (2018).

    Article  ADS  Google Scholar 

  82. Haemmerlé, L., Woods, T. E., Klessen, R. S., Heger, A. & Whalen, D. J. The evolution of supermassive Population III stars. Mon. Not. Royal Astron. Soc. 474, 2757–2773 (2018).

    Article  ADS  Google Scholar 

  83. Haemmerlé, L. & Meynet, G. Magnetic braking of supermassive stars through winds. Astron. Astrophys. 623, L7 (2019).

    Article  ADS  Google Scholar 

  84. Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001).

    Article  ADS  CAS  Google Scholar 

  85. Baraffe, I., Heger, A. & Woosley, S. E. On the stability of very massive primordial stars. Astrophys. J. 550, 890–896 (2001).

    Article  ADS  CAS  Google Scholar 

  86. Hosokawa, T., Yorke, H. W., Inayoshi, K., Omukai, K. & Yoshida, N. Formation of primordial supermassive stars by rapid mass accretion. Astrophys. J. 778, 178 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.A.L. was supported by UAEU UPAR grant no. 31S390. S.K. acknowledges support from the UK STFC via grant ST/V000594/1. N.P.H. acknowledges funding from the European Research Council for the Horizon 2020 ERC Consolidator Grant project ICYBOB, grant no. 818940. T.E.W. acknowledges support from the NRC-Canada Plaskett Fellowship. The Enzo simulations were performed on HPC resources at UAEU and the Institute of Cosmology and Gravitation at the University of Portsmouth (Sciama). D.J.W. was supported by the Ida Pfeiffer Professorship at the Institute of Astrophysics at the University of Vienna.

Author information

Authors and Affiliations

Authors

Contributions

D.J.W. proposed this study, assisted in its development and wrote the paper. M.A.L. developed this study, performed the Enzo simulations and analysed its data. S.K. contributed to the development of this study and the interpretation of its results. N.P.H. performed the MESA calculations and analysed its results with T.E.W.

Corresponding authors

Correspondence to M. A. Latif or D. J. Whalen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Additional radial gas profiles at collapse.

The ratio of the enclosed gas mass to the Jeans mass (a) and gas infall rates (b) are at the onset of collapse (green), 5 kyr (blue), and at 11 kyr (red). Regions where the ratio exceeds 1 are where gas is prone to collapse. H2 mass fractions (c) are at the same times. At 11 kyr they approach unity at the smallest scales, indicating the nearly complete molecularization of the core.

Extended Data Fig. 2 C1 and C2 masses vs. time in the pressure floor run (solid) and the sink particle run (dashed).

The occasional slight dips in C1 mass are due to tidal stripping with other structures in the core.

Extended Data Fig. 3 Evolution of SMS 1 and SMS 2.

Accretion rates are shown in (a) and Hertzsprung-Russell tracks are shown in (b).

Extended Data Fig. 4 Halo mass vs. redshift.

The masses in (a) are from z = 35 (80 Myr after the Big Bang), when it crosses the threshold for normal Pop III star formation, to z = 25.7 (126 Myr after the Big Bang), when it begins to dynamically collapse. The subsequent growth of the halo from z = 15 to z = 6 is shown in (b).

Extended Data Fig. 5 Structure of the turbulent core in the sink particle run.

Images are 25 pc on a side and the times in a and b are 0.6 Myr and 1.0 Myr after collapse, respectively.

Extended Data Fig. 6 Kippenhahn diagrams for the two stars.

Internal structures for SMS 1 and 2 are shown in (a) and (b), respectively. The x- and y-axes are time and mass coordinate, respectively, so the interior structure of the star and energy generation at a given time can be read from the vertical line through the diagram at that time. Colours show energy generation rates, \({\varepsilon }_{{\rm{nuc}}}\), at each mass coordinate and red contours mark regions where convection dominates energy transport (all other regions are radiative).

Extended Data Fig. 7 The collapse of SMS 1 and SMS 2 to DCBHs.

Infall velocities are shown vs. mass coordinate in (a) and vs. radius in (b).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latif, M.A., Whalen, D.J., Khochfar, S. et al. Turbulent cold flows gave birth to the first quasars. Nature 607, 48–51 (2022). https://doi.org/10.1038/s41586-022-04813-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04813-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing