Abstract
How quasars powered by supermassive black holes formed less than a billion years after the Big Bang is still one of the outstanding problems in astrophysics, 20 years after their discovery1,2,3,4. Cosmological simulations suggest that rare cold flows converging on primordial haloes in low-shear environments could have created these quasars if they were 104–105 solar masses at birth, but could not resolve their formation5,6,7,8. Semi-analytical studies of the progenitor halo of a primordial quasar found that it favours the formation of such seeds, but could not verify if one actually appeared9. Here we show that a halo at the rare convergence of strong, cold accretion flows creates massive black holes seeds without the need for ultraviolet backgrounds, supersonic streaming motions or even atomic cooling. Cold flows drive violent, supersonic turbulence in the halo, which prevents star formation until it reaches a mass that triggers sudden, catastrophic baryon collapse that forms 31,000 and 40,000 solar-mass stars. This simple, robust process ensures that haloes capable of forming quasars by a redshift of z > 6 produce massive seeds. The first quasars were thus a natural consequence of structure formation in cold dark matter cosmologies, and not exotic, finely tuned environments as previously thought10,11,12,13,14.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The Enzo parameter files and initial conditions files generated by MUSIC that are required to perform the simulations are available at https://doi.org/10.5281/zenodo.5853118. The MUSIC input files required to generate the initial conditions are available at https://sites.google.com/site/latifmaastro/ics. The MESA inlist files required to evolve the two stars can be found at https://cococubed.com/mesa_market/inlists.html.
Code availability
The code used to produce our cosmological simulations, Enzo v.2.6, can be found at https://bitbucket.org/enzo/enzo-dev/tree/enzo-2.6.1. The MESA code used to evolve the two stars, v.12778, can be found at https://zenodo.org/record/3698354#.YgkaN-TfUlQ.
References
Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey. II. Discovery of three additional quasars at z > 6. Astron. J. 125, 1649–1659 (2003).
Mortlock, D. J. et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011).
Volonteri, M. The formation and evolution of massive black holes. Science 337, 544 (2012).
Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. Lett. 907, L1 (2021).
Tenneti, A., Di Matteo, T., Croft, R., Garcia, T. & Feng, Y. The descendants of the first quasars in the BlueTides simulation. Mon. Not. Royal Astron. Soc. 474, 597–603 (2018).
Smidt, J., Whalen, D. J., Johnson, J. L., Surace, M. & Li, H. Radiation hydrodynamical simulations of the first quasars. Astrophys. J. 865, 126 (2018).
Huang, K.-W., Di Matteo, T., Bhowmick, A. K., Feng, Y. & Ma, C.-P. BLUETIDES simulation: establishing black hole–galaxy relations at high redshift. Mon. Not. Royal Astron. Soc. 478, 5063–5073 (2018).
Zhu, Q. et al. The formation of the first quasars. I. The black hole seeds, accretion and feedback models. Preprint at https://arxiv.org/abs/2012.01458 (2020).
Lupi, A., Haiman, Z. & Volonteri, M. Forming massive seed black holes in high-redshift quasar host progenitors. Mon. Not. Royal Astron. Soc. 503, 5046–5060 (2021) .
Alexander, T. & Natarajan, P. Rapid growth of seed black holes in the early universe by supra-exponential accretion. Science 345, 1330–1333 (2014) .
Latif, M. A., Bovino, S., Grassi, T., Schleicher, D. R. G. & Spaans, M. How realistic UV spectra and X-rays suppress the abundance of direct collapse black holes. Mon. Not. Royal Astron. Soc. 446, 3163–3177 (2015) .
Hirano, S., Hosokawa, T., Yoshida, N. & Kuiper, R. Supersonic gas streams enhance the formation of massive black holes in the early universe. Science 357, 1375–1378 (2017) .
Woods, T. E., Heger, A., Whalen, D. J., Haemmerlé, L. & Klessen, R. S. On the maximum mass of accreting primordial supermassive stars. Astrophys. J. 842, L6 (2017) .
Woods, T. E., Patrick, S., Elford, J. S., Whalen, D. J. & Heger, A. On the evolution of supermassive primordial stars in cosmological flows. Astrophys. J. 915, 110 (2021) .
Feng, Y., Di Matteo, T., Croft, R. & Khandai, N. High-redshift supermassive black holes: accretion through cold flows. Mon. Not. Royal Astron. Soc. 440, 1865–1879 (2014) .
Lupi, A. et al. High-redshift quasars and their host galaxies – I. Kinematical and dynamical properties and their tracers. Mon. Not. Royal Astron. Soc. 488, 4004–4022 (2019) .
Valentini, M., Gallerani, S. & Ferrara, A. Host galaxies of high-redshift quasars: SMBH growth and feedback. Mon. Not. Royal Astron. Soc. 507, 1–26 (2021) .
Li, Y. et al. Formation of z ~ 6 quasars from hierarchical galaxy mergers. Astrophys. J. 665, 187–208 (2007) .
Wise, J. H. et al. Formation of massive black holes in rapidly growing pre-galactic gas clouds. Nature 566, 85–88 (2019) .
Bromm, V. & Larson, R. B. The first stars. Ann. Rev. Astron. Astrophys. 42, 79–118 (2004) .
Lodato, G. & Natarajan, P. Supermassive black hole formation during the assembly of pre-galactic discs. Mon. Not. Royal Astron. Soc. 371, 1813–1823 (2006) .
Regan, J. A. & Haehnelt, M. G. Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures ≳ 10 000 K. Mon. Not. Royal Astron. Soc. 396, 343–353 (2009) .
Patrick, S. J., Whalen, D. J., Elford, J. S. & Latif, M. A. The collapse of atomically-cooled primordial haloes. I. High Lyman–Werner backgrounds. Preprint at https://arxiv.org/abs/2012.11612 (2020).
Surace, M. et al. On the detection of supermassive primordial stars. Astrophys. J. 869, L39 (2018).
Whalen, D. J. et al. Finding direct-collapse black holes at birth. Astrophys. J. 897, L16 (2020) .
Latif, M. A., Khochfar, S., Schleicher, D. & Whalen, D. J. Radiation hydrodynamical simulations of the birth of intermediate-mass black holes in the first galaxies. Mon. Not. Royal Astron. Soc. 508, 1756–1767 (2021) .
Agarwal, B., Smith, B., Glover, S., Natarajan, P. & Khochfar, S. New constraints on direct collapse black hole formation in the early Universe. Mon. Not. Royal Astron. Soc. 459, 4209–4217 (2016) .
Valiante, R., Agarwal, B., Habouzit, M. & Pezzulli, E. On the formation of the first quasars. Publ. Astron. Soc. Aust. 34, e031 (2017) .
Di Matteo, T., Croft, R. A. C., Feng, Y., Waters, D. & Wilkins, S. The origin of the mostmassive black holes at high-z: BlueTides and the next quasar frontier. Mon. Not. Royal Astron. Soc. 467, 4243–4251 (2017) .
Bryan, G. L. et al. ENZO: an adaptive mesh refinement code for astrophysics. Astrophys. J. Suppl. Ser. 211, 19 (2014).
Efstathiou, G., Davis, M., White, S. D. M. & Frenk, C. S. Numerical techniques for large cosmological N-body simulations. Astrophys. J. Suppl. Ser. 57, 241–260 (1985).
Couchman, H. M. P. Mesh-refined P3M – a fast adaptive N-body algorithm. Astrophys. J. 368, L23–L26 (1991).
Anninos, P., Zhang, Y., Abel, T. & Norman, M. L. Cosmological hydrodynamics with multi-species chemistry and nonequilibrium ionization and cooling. New Astron. 2, 209–224 (1997).
Woodward, P. & Colella, P. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984).
Bryan, G. L., Norman, M. L., Stone, J. M., Cen, R. & Ostriker, J. P. A piecewise parabolic method for cosmological hydrodynamics. Comput. Phys. Commun. 89, 149–168 (1995).
Toro, E. F., Spruce, M. & Speares, W. Restoration of the contact surface in the HLL–Riemann solver. Shock Waves 4, 25–34 (1994).
Glover, S. C. O. & Abel, T. Uncertainties in H2 and HD chemistry and cooling and their role in early structure formation. Mon. Not. Royal Astron. Soc. 388, 1627–1651 (2008).
Ripamonti, E. & Abel, T. Fragmentation and the formation of primordial protostars: the possible role of collision-induced emission. Mon. Not. Royal Astron. Soc. 348, 1019–1034 (2004).
Glover, S. C. O. Simulating the formation of massive seed black holes in the early Universe – I. An improved chemical model. Mon. Not. Royal Astron. Soc. 451, 2082–2096 (2015).
Glover, S. C. O. Simulating the formation of massive seed black holes in the early Universe – II. Impact of rate coefficient uncertainties. Mon. Not. Royal Astron. Soc. 453, 2901–2918 (2015).
Hahn, O. & Abel, T. Multi-scale initial conditions for cosmological simulations. Mon. Not. Royal Astron. Soc. 415, 2101–2121 (2011).
Planck Collaboration et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).
Khandai, N., Feng, Y., DeGraf, C., Di Matteo, T. & Croft, R. A. C. The formation of galaxies hosting z ∼ 6 quasars. Mon. Not. Royal Astron. Soc. 423, 2397–2406 (2012).
Trenti, M., Santos, M. R. & Stiavelli, M. Where can we really find the first stars’ remnants today? Astrophys. J. 687, 1–6 (2008).
Behroozi, P. S., Wechsler, R. H. & Wu, H.-Y. The ROCKSTAR phase-space temporal halo finder and the velocity offsets of cluster cores. Astrophys. J. 762, 109 (2013).
Wise, J. H. Enzo-MRP-music. GitHub https://github.com/jwise77/enzo-mrp-music (2020).
Federrath, C., Sur, S., Schleicher, D. R. G., Banerjee, R. & Klessen, R. S. A new JeansrResolution criterion for (M)HD simulations of self-gravitating gas: application to magnetic field amplification by gravity-driven turbulence. Astrophys. J. 731, 62 (2011).
Latif, M. A., Schleicher, D. R. G., Schmidt, W. & Niemeyer, J. Black hole formation in the early Universe. Mon. Not. Royal Astron. Soc. 433, 1607–1618 (2013).
Hennebelle, P. & Chabrier, G. Analytical theory for the initial mass function: CO clumps and prestellar cores. Astrophys. J. 684, 395–410 (2008).
Federrath, C. The turbulent formation of stars. Phys. Today 71, 38–42 (June, 2018).
Stacy, A., Bromm, V. & Loeb, A. Rotation speed of the first stars. Mon. Not. Royal Astron. Soc. 413, 543–553 (2011).
Turk, M. J. et al. yt: a multi-code analysis toolkit for astrophysical simulation data. Astrophys. J. Suppl. Ser. 192, 9 (2011).
Machacek, M. E., Bryan, G. L. & Abel, T. Simulations of pregalactic structure formation with radiative feedback. Astrophys. J. 548, 509–521 (2003).
Greif, T. H. et al. Simulations on a moving mesh: the clustered formation of Population III protostars. Astrophys. J. 737, 75 (2011).
Becerra, F., Greif, T. H., Springel, V. & Hernquist, L. E. Formation of massive protostars in atomic cooling haloes. Mon. Not. Royal Astron. Soc. 446, 2380–2393 (2015).
Becerra, F., Marinacci, F., Bromm, V. & Hernquist, L. E. Assembly of supermassive black hole seeds. Mon. Not. Royal Astron. Soc. 480, 5029–5045 (2018).
Hosokawa, T. et al. Formation of massive primordial stars: intermittent UV feedback with episodic mass accretion. Astrophys. J. 824, 119 (2016).
Latif, M. A. & Schleicher, D. R. G. Magnetic fields in primordial accretion disks. Astron. Astrophys. 585, A151 (2016).
Inayoshi, K. & Haiman, Z. Does disc fragmentation prevent the formation of supermassive stars in protogalaxies? Mon. Not. Royal Astron. Soc. 445, 1549–1557 (2014).
Regan, J. A. & Downes, T. P. Rise of the first supermassive stars. Mon. Not. Royal Astron. Soc. 478, 5037–5049 (2018).
Regan, J. A. et al. The formation of very massive stars in early galaxies and implications for intermediate mass black holes. Open J. Astrophys. 3, 15 (2020).
Latif, M. A., Whalen, D. & Khochfar, S. The birth mass function of Population III stars. Astrophys. J. 925, 28 (2022).
Krumholz, M. R., McKee, C. F. & Klein, R. I. Embedding Lagrangian sink particles in Eulerian grids. Astrophys. J. 611, 399–412 (2004).
Federrath, C., Banerjee, R., Clark, P. C. & Klessen, R. S. Modeling collapse and accretion in turbulent gas clouds: implementation and comparison of sink particles in AMR and SPH. Astrophys. J. 713, 269–290 (2010).
Latif, M. A., Schleicher, D. R. G., Schmidt, W. & Niemeyer, J. C. The characteristic black hole mass resulting from direct collapse in the early Universe. Mon. Not. Royal Astron. Soc. 436, 2989–2996 (2013).
Tseliakhovich, D. & Hirata, C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82, 083520 (2010).
Machacek, M. E., Bryan, G. L. & Abel, T. Effects of a soft X-ray background on structure formation at high redshift. Mon. Not. Royal Astron. Soc. 338, 273–286 (2003).
Aykutalp, A., Wise, J. H., Spaans, M. & Meijerink, R. Songlines from direct collapse seed black holes: effects of X-rays on black hole growth and stellar populations. Astrophys. J. 797, 139 (2014).
Aykutalp, A., Barrow, K. S. S., Wise, J. H. & Johnson, J. L. Induced metal-free star formation around a massive black hole seed. Astrophys. J. 898, L53 (2020).
Chon, S. & Omukai, K. Supermassive star formation via super competitive accretion in slightly metal-enriched clouds. Mon. Not. Royal Astron. Soc. 494, 2851–2860 (2020).
Latif, M. A. & Volonteri, M. Assessing inflow rates in atomic cooling haloes: implications for direct collapse black holes. Mon. Not. Royal Astron. Soc. 452, 1026–1044 (2015).
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).
Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).
Henyey, L., Vardya, M. S. & Bodenheimer, P. Studies in stellar evolution. III. The calculation of model envelopes. Astrophys. J. 142, 841 (1965).
Rogers, F. J. & Nayfonov, A. Updated and expanded OPAL equation-of-state tables: implications for helioseismology. Astrophys. J. 576, 1064–1074 (2002).
Saumon, D., Chabrier, G. & van Horn, H. M. An equation of state for low-mass stars and giant planets. Astrophys. J. Suppl. Ser. 99, 713 (1995).
Timmes, F. X. & Swesty, F. D. The accuracy, consistency, and speed of an electron-positron equation of state based on table interpolation of the Helmholtz free energy. Astrophys. J. Suppl. Ser. 126, 501–516 (2000).
Potekhin, A. Y. & Chabrier, G. Thermodynamic functions of dense plasmas: analytic approximations for astrophysical applications. Contrib. Plasma Phys. 50, 82–87 (2010).
Chandrasekhar, S. The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity. Astrophys. J. 140, 417 (1964).
Haemmerlé, L., Woods, T. E., Klessen, R. S., Heger, A. & Whalen, D. J. On the rotation of supermassive stars. Astrophys. J. 853, L3 (2018).
Haemmerlé, L., Woods, T. E., Klessen, R. S., Heger, A. & Whalen, D. J. The evolution of supermassive Population III stars. Mon. Not. Royal Astron. Soc. 474, 2757–2773 (2018).
Haemmerlé, L. & Meynet, G. Magnetic braking of supermassive stars through winds. Astron. Astrophys. 623, L7 (2019).
Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001).
Baraffe, I., Heger, A. & Woosley, S. E. On the stability of very massive primordial stars. Astrophys. J. 550, 890–896 (2001).
Hosokawa, T., Yorke, H. W., Inayoshi, K., Omukai, K. & Yoshida, N. Formation of primordial supermassive stars by rapid mass accretion. Astrophys. J. 778, 178 (2013).
Acknowledgements
M.A.L. was supported by UAEU UPAR grant no. 31S390. S.K. acknowledges support from the UK STFC via grant ST/V000594/1. N.P.H. acknowledges funding from the European Research Council for the Horizon 2020 ERC Consolidator Grant project ICYBOB, grant no. 818940. T.E.W. acknowledges support from the NRC-Canada Plaskett Fellowship. The Enzo simulations were performed on HPC resources at UAEU and the Institute of Cosmology and Gravitation at the University of Portsmouth (Sciama). D.J.W. was supported by the Ida Pfeiffer Professorship at the Institute of Astrophysics at the University of Vienna.
Author information
Authors and Affiliations
Contributions
D.J.W. proposed this study, assisted in its development and wrote the paper. M.A.L. developed this study, performed the Enzo simulations and analysed its data. S.K. contributed to the development of this study and the interpretation of its results. N.P.H. performed the MESA calculations and analysed its results with T.E.W.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review information
Peer review information
Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Additional radial gas profiles at collapse.
The ratio of the enclosed gas mass to the Jeans mass (a) and gas infall rates (b) are at the onset of collapse (green), 5 kyr (blue), and at 11 kyr (red). Regions where the ratio exceeds 1 are where gas is prone to collapse. H2 mass fractions (c) are at the same times. At 11 kyr they approach unity at the smallest scales, indicating the nearly complete molecularization of the core.
Extended Data Fig. 2 C1 and C2 masses vs. time in the pressure floor run (solid) and the sink particle run (dashed).
The occasional slight dips in C1 mass are due to tidal stripping with other structures in the core.
Extended Data Fig. 3 Evolution of SMS 1 and SMS 2.
Accretion rates are shown in (a) and Hertzsprung-Russell tracks are shown in (b).
Extended Data Fig. 4 Halo mass vs. redshift.
The masses in (a) are from z = 35 (80 Myr after the Big Bang), when it crosses the threshold for normal Pop III star formation, to z = 25.7 (126 Myr after the Big Bang), when it begins to dynamically collapse. The subsequent growth of the halo from z = 15 to z = 6 is shown in (b).
Extended Data Fig. 5 Structure of the turbulent core in the sink particle run.
Images are 25 pc on a side and the times in a and b are 0.6 Myr and 1.0 Myr after collapse, respectively.
Extended Data Fig. 6 Kippenhahn diagrams for the two stars.
Internal structures for SMS 1 and 2 are shown in (a) and (b), respectively. The x- and y-axes are time and mass coordinate, respectively, so the interior structure of the star and energy generation at a given time can be read from the vertical line through the diagram at that time. Colours show energy generation rates, \({\varepsilon }_{{\rm{nuc}}}\), at each mass coordinate and red contours mark regions where convection dominates energy transport (all other regions are radiative).
Extended Data Fig. 7 The collapse of SMS 1 and SMS 2 to DCBHs.
Infall velocities are shown vs. mass coordinate in (a) and vs. radius in (b).
Supplementary information
Rights and permissions
About this article
Cite this article
Latif, M.A., Whalen, D.J., Khochfar, S. et al. Turbulent cold flows gave birth to the first quasars. Nature 607, 48–51 (2022). https://doi.org/10.1038/s41586-022-04813-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-022-04813-y
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.