Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate change increases cross-species viral transmission risk

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Abstract

At least 10,000 virus species have the capacity to infect humans, but at present, the vast majority are circulating silently in wild mammals1,2. However, climate and land use change will produce novel opportunities for viral sharing among previously geographically-isolated species of wildlife3,4. In some cases, this will facilitate zoonotic spillover—a mechanistic link between global environmental change and disease emergence. Here, we simulate potential hotspots of future viral sharing, using a phylogeographic model of the mammal-virus network, and projections of geographic range shifts for 3,139 mammal species under climate change and land use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, driving the novel cross-species transmission of their viruses an estimated 4,000 times. Because of their unique dispersal capacity, bats account for the majority of novel viral sharing, and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Surprisingly, we find that this ecological transition may already be underway, and holding warming under 2 °C within the century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking species’ range shifts, especially in tropical regions that harbor the most zoonoses and are experiencing rapid warming.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Colin J. Carlson or Gregory F. Albery.

Supplementary information

Supplementary Figures

Supplementary Figures 1–20.

Reporting Summary

Supplementary Table 1

Spreadsheet showing how particular IUCN habitat use classifications were reconciled to broader categories of land cover and use.

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carlson, C.J., Albery, G.F., Merow, C. et al. Climate change increases cross-species viral transmission risk. Nature (2022). https://doi.org/10.1038/s41586-022-04788-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-022-04788-w

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing