Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A solid-state electrolysis process for upcycling aluminium scrap

Abstract

The recycling of aluminium scrap today utilizing a remelting technique downgrades the quality of the aluminium, and the final sink of this downgraded recycled aluminium is aluminium casting alloys1,2,3,4,5,6,7,8,9. The predicted increase in demand for high-grade aluminium as consumers choose battery-powered electric vehicles over internal combustion engine vehicles is expected to be accompanied by a drop in the demand for low-grade recycled aluminium, which is mostly used in the production of internal combustion engines2,7,10,11. To meet the demand for high-grade aluminium in the future, a new aluminium recycling method capable of upgrading scrap to a level similar to that of primary aluminium is required2,3,4,7,11. Here we propose a solid-state electrolysis (SSE) process using molten salts for upcycling aluminium scrap. The SSE produces aluminium with a purity comparable to that of primary aluminium from aluminium casting alloys. Moreover, the energy consumption of the industrial SSE is estimated to be less than half that of the primary aluminium production process. By effectively recycling aluminium scrap, it could be possible to consistently meet demand for high-grade aluminium. True sustainability in the aluminium cycle is foreseeable with the use of this efficient, low-energy-consuming process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global aluminium cycle in 2020 and 2040.
Fig. 2: The schematic and the electrochemical principle of the proposed SSE process.
Fig. 3: Results for the electrolysis of the AC2A casting alloy in molten MgCl2–NaCl–KCl–5mol%AlF3.
Fig. 4: Comparison of the SSE process with other industrial aluminium processes.

Similar content being viewed by others

Data availability

All data are available in the main text or the online supplementary materials.

References

  1. Reck, B. K. & Graedel, T. E. Challenges in metal recycling. Science 337, 690–695 (2012).

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Liu, G., Bangs, C. E. & Müller, D. B. Stock dynamics and emission pathways of the global aluminium cycle. Nat. Clim. Change 3, 338–342 (2013).

    Article  CAS  ADS  Google Scholar 

  3. Cullen, J. M. & Allwood, J. M. Mapping the global flow of aluminum: from liquid aluminum to end-use goods. Environ. Sci. Technol. 47, 3057–3064 (2013).

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Løvik, A. N., Modaresi, R. & Müller, D. B. Long-term strategies for increased recycling of automotive aluminum and its alloying elements. Environ. Sci. Technol. 48, 4257–4265 (2014).

    Article  ADS  PubMed  Google Scholar 

  5. Gaustad, G., Olivetti, E. & Kirchain, R. Improving aluminum recycling: a survey of sorting and impurity removal technologies. Resour. Conserv. Recycl. 58, 79–87 (2012).

    Article  Google Scholar 

  6. Capuzzi, S. & Timelli, G. Preparation and melting of scrap in aluminum recycling: a review. Metals 8, 249 (2018).

    Article  Google Scholar 

  7. Hatayama, H., Daigo, I., Matsuno, Y. & Adachi, Y. Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology. Resour. Conserv. Recycl. 66, 8–14 (2012).

    Article  Google Scholar 

  8. Nakajima, K. et al. Thermodynamic analysis of contamination by alloying elements in aluminum recycling. Environ. Sci. Technol. 44, 5594–5600 (2010).

    Article  CAS  ADS  PubMed  Google Scholar 

  9. Hiraki, T. et al. Thermodynamic analysis for the refining ability of salt flux for aluminum recycling. Materials 7, 5543–5553 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Kosai, S., Matsui, K., Matsubae, K., Yamasue, E. & Nagasaka, T. Natural resource use of gasoline, hybrid, electric and fuel cell vehicles considering land disturbances. Resour. Conserv. Recycl. 166, 105256 (2021).

    Article  Google Scholar 

  11. Shaffer, B., Auffhammer, M. & Samaras, C. Make electric vehicles lighter to maximize climate and safety benefits. Nature 598, 254–256 (2021).

    Article  CAS  ADS  PubMed  Google Scholar 

  12. International Aluminium Institute. https://international-aluminium.org/ (2021).

  13. Graedel, T. E., Reck, B. K. & Miatto, A. Alloy information helps prioritize material criticality lists. Nat. Commun. 13, 150 (2022).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  14. American Society for Testing and Materials. Annual Book of ASTM Standards: 2013: Section 2: Nonferrous Metal Products (ASTM International, 2013).

  15. Reuter, M. A., van Schaik, A., Gutzmer, J., Bartie, N. & Abadías-Llamas, A. Challenges of the circular economy: a material, metallurgical, and product design perspective. Annu. Rev. Mater. Res. 49, 253–274 (2019).

    Article  CAS  ADS  Google Scholar 

  16. Kondo, M., Maeda, H. & Mizuguchi, M. The production of high-purity aluminum in Japan. JOM 42, 36–37 (1990).

    Article  CAS  Google Scholar 

  17. Schwarz, V. & Wendt, H. Electrorefining of aluminium scrap from chloride melts. J. Appl. Electrochem. 25, 34–40 (1995).

    Article  CAS  Google Scholar 

  18. Wu, B., Reddy, R. G. & Rogers, R. D. in Recycling of Metals and Engineered Materials (eds Stewart, D. L. et al.) 845–856 (John Wiley & Sons, 2000).

  19. Kamavaram, V., Mantha, D. & Reddy, R. G. Electrorefining of aluminum alloy in ionic liquids at low temperatures. J. Min. Metall. B 39, 43–58 (2003).

    Article  CAS  Google Scholar 

  20. Kamavaram, V., Mantha, D. & Reddy, R. G. Recycling of aluminum metal matrix composite using ionic liquids. Electrochim. Acta 50, 3286–3295 (2005).

    Article  CAS  Google Scholar 

  21. Pradhan, D., Mantha, D. & Reddy, R. G. The effect of electrode surface modification and cathode overpotential on deposit characteristics in aluminum electrorefining using EMIC–AlCl3 ionic liquid electrolyte. Electrochim. Acta 54, 6661–6667 (2009).

    Article  CAS  Google Scholar 

  22. Pradhan, D. & Reddy, R. G. Dendrite-free aluminum electrodeposition from AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid electrolytes. Metall. Mater. Trans. B 43, 519–531 (2012).

    Article  CAS  Google Scholar 

  23. Pemsler, J. P. & Michael, D. Electrorefining of Aluminium NSF/CPE-81012, PB81-243693 (National Science Foundation, 1981).

  24. Xu, J., Zhang, J. & Shi, Z. Extracting aluminum from aluminum alloys in AlCl3-NaCl molten salts. High Temp. Mater. Process. 32, 367–373 (2013).

    Article  CAS  Google Scholar 

  25. Xu, J. et al. Current efficiency of recycling aluminum from aluminum scraps by electrolysis. Trans. Nonferrous Met. Soc. China 24, 250–256 (2014).

    Article  CAS  Google Scholar 

  26. Huan, S. et al. Recovery of aluminum from waste aluminum alloy by low-temperature molten salt electrolysis. Miner. Eng. 154, 106386 (2020).

    Article  CAS  Google Scholar 

  27. Huan, S., Wang, Y., Liu, K., Peng, J. & Di, Y. Impurity behavior in aluminum extraction by low-temperature molten salt electrolysis. J. Electrochem. Soc. 167, 103503 (2020).

    Article  CAS  ADS  Google Scholar 

  28. Ponweiser, N. & Richter, K. W. New investigation of phase equilibria in the system Al–Cu–Si. J. Alloys Compd. 512, 252–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Villada, C., Ding, W., Bonk, A. & Bauer, T. Engineering molten MgCl2–KCl–NaCl salt for high-temperature thermal energy storage: review on salt properties and corrosion control strategies. Sol. Energy Mater. Sol. Cells 232, 111344 (2021).

    Article  CAS  Google Scholar 

  30. Zhou, W. & Zhang, J. Thermodynamic evaluation of LiCl-KCl-PuCl3 system. J. Alloys Compd. 695, 2306–2313 (2017).

    Article  CAS  Google Scholar 

  31. Kvande, H. & Haupin, W. Cell voltage in aluminum electrolysis: a practical approach. JOM 52, 31–37 (2000).

    Article  CAS  Google Scholar 

  32. Haupin, W. in Light Metals 1998 (ed. Welch, B.) 531–537 (Minerals, Metals, & Materials Soc., 1998).

  33. Zheng, Y., Dong, K., Wang, Q., Zhang, J. & Lu, X. Density, viscosity, and conductivity of Lewis acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate ionic liquids. J. Chem. Eng. Data 58, 32–42 (2013).

    Article  CAS  Google Scholar 

  34. Wang, Q., Zhang, Q., Lu, X. & Zhang, S. Electrodeposition of Al from chloroaluminate ionic liquids with different cations. Ionics 23, 2449–2455 (2017).

    Article  CAS  Google Scholar 

  35. Zhu, G. et al. Rechargeable aluminum batteries: effects of cations in ionic liquid electrolytes. RSC Adv. 9, 11322–11330 (2019).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  36. Van Artsdalen, E. R. & Yaffe, I. S. Electrical conductance and density of molten salt systems: KCl–LiCl, KCl–NaCl and KCl–KI. J. Phys. Chem. 59, 118–127 (1955).

    Article  Google Scholar 

  37. Huber, R. W., Potter, E. V. & Clair, H. W. ST. Electrical Conductivity and Density of Fused Binary Mixtures of Magnesium Chloride and Other Chlorides. Bureau of Mines Report of Investigation 4858, 1–14 (United States Department of Interior, 1952).

  38. Robelin, C., Chartrand, P. & Pelton, A. D. Thermodynamic evaluation and optimization of the (NaCl+KCl+AlCl3) system. J. Chem. Thermodyn. 36, 683–699 (2004).

    Article  CAS  Google Scholar 

  39. Report of Inventory Survey of Scrap Melting https://www.aluminum.or.jp/environment/pdf/2-1.pdf (Japan Aluminum Association, 2007).

  40. Addendum to the Life Cycle Inventory Data and Environmental Metrics for the Primary Aluminium Industry https://international-aluminium.org/resource/life-cycle-inventory-data-and-environmental-metrics/ (International Aluminium Institute, 2018).

  41. Masuko, N. & Masio, K. Present aluminum smelting technology. J. Jpn. Inst. Light Met. 65, 66–71 (2015).

    Article  CAS  Google Scholar 

  42. Energy Technology Perspectives 2015, IEA, Paris 45 https://www.iea.org/reports/energy-technology-perspectives-2015. (International Energy Agency, 2015).

  43. Global Aluminum Flow Model 2017 https://alucycle.international-aluminium.org/ (The International Aluminium Institute, 2018).

  44. Hatayama, H. Development of a Material Circulation Analysis Model Considering the Global Economic Development and Changes in Industrial Structure. PhD thesis, No. 126833, Univ. Tokyo (2011).

Download references

Acknowledgements

We thank Y. Sasaki (Tohoku University) and E. Webeck (TEQED) for their input to the discussions. We thank K. Kobayashi and K. Watanabe for their experimental assistance. We also thank W. Takayanagi (LAIMAN) for illustration of graphic images. Financial support was provided by the Grant-in-Aid for Scientific Research, JSPS KAKENHI grant nos. 20H02492, 20K15069, 21H04610 and 21K17918, and the New Energy and Industrial Technology Development Organization, NEDO grant no. P21003. The cooperation of Hoei Metal Co. Ltd. is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. and T.N. conceived the idea of the study. X.L., T.H. and O.T. undertook the experiments. Z.Z. and K.M. undertook the scenario analysis. X.L., Z.Z., K.M., H.Z. and T.N. composed the manuscript and discussed the content of the manuscript.

Corresponding authors

Correspondence to Hongmin Zhu or Tetsuya Nagasaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Daniel Copper, Yaowu Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Results for the electrolysis of the AC2A casting alloy in the molten LiCl-KCl-5mol%AlF3.

(a) The anode and cathode potentials and (b) the cell voltage during the recycling of aluminium casting alloy (AC2A) using SSE (electrolyte: LiCl-KCl-5 mol%AlF3; electrolysis temperature: 500 °C). EPMA results of (c) the initial aluminium casting alloy (AC2A) and (d) the anode slime, showing the elemental distribution.

Extended Data Fig. 2 Results for the electrolysis of the AD12 die-casting alloy in the molten LiCl-KCl-5mol%AlF3.

(a) The anode and cathode potentials and (b) the cell voltage while recycling the aluminium die-casting alloy (AD12) using SSE (electrolyte: LiCl-KCl-5 mol%AlF3; electrolysis temperature: 500 °C). (c) The composition by ICP analysis and (d) XRD results of the initial aluminium die-casting alloy (AD12), anode slime and the cathode deposition. EPMA results of (e) the initial aluminium die-casting alloy (AD12) and (f) the anode slime, showing the elemental distribution.

Extended Data Fig. 3 The calibrated potential of the used Ag/AgCl reference electrode.

(a) The controlled current, (b) the electrode potential, and (c) the expansion of the black square area in (b).

Extended Data Fig. 4 The system boundary of the global aluminium cycle.

The fabrication, use, scrap processing and metallurgical processes are shown in blue and the products are shown in yellow. Process losses are shown in grey. Internal combustion engine vehicles are abbreviated as ICEVs. Hybrid electric vehicles are abbreviated as HEVs. Battery electric vehicles are abbreviated as BEVs. End-of-life is abbreviated as EoL.

Extended Data Table 1 Description of symbols used in Fig. 1
Extended Data Table 2 The conductivity and cost of typical ionic liquids and the molten salts used in our study
Extended Data Table 3 The estimated energy consumption for the practical SSE process
Extended Data Table 4 A comparison of the primary aluminium process, remelting process, three-layer electrolysis and SSE

Supplementary information

Supplementary Tables

Supplementary Tables 1–13.

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Zhang, Z., Hiraki, T. et al. A solid-state electrolysis process for upcycling aluminium scrap. Nature 606, 511–515 (2022). https://doi.org/10.1038/s41586-022-04748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04748-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing