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            Abstract
Magic-angle twisted trilayer graphene (MATTG) has emerged as a moirÃ© material that exhibits strong electronic correlations and unconventional superconductivity1,2. However, local spectroscopic studies of this system are still lacking. Here we perform high-resolution scanning tunnelling microscopy and spectroscopy of MATTG that reveal extensive regions of atomic reconstruction favouring mirror-symmetric stacking. In these regions, we observe symmetry-breaking electronic transitions and doping-dependent band-structure deformations similar to those in magic-angle bilayers, as expected theoretically given the commonality of flat bands3,4. Most notably in a density window spanning two to three holes per moirÃ© unit cell, the spectroscopic signatures of superconductivity are manifest as pronounced dips in the tunnelling conductance at the Fermi level accompanied by coherence peaks that become gradually suppressed at elevated temperatures and magnetic fields. The observed evolution of the conductance with doping is consistent with a gate-tunable transition from a gapped superconductor to a nodal superconductor, which is theoretically compatible with a sharp transition from a Bardeenâ€“Cooperâ€“Schrieffer superconductor to a Boseâ€“Einstein-condensation superconductor with a nodal order parameter. Within this doping window, we also detect peakâ€“dipâ€“hump structures that suggest that superconductivity is driven by strong coupling to bosonic modes of MATTG. Our results will enable further understanding of superconductivity and correlated states in graphene-based moirÃ© structures beyond twisted bilayers5.
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                    Fig. 1: Topography and spectroscopy of MATTG at zero magnetic field.[image: ]


Fig. 2: LDOS Landau fan diagram and doping-dependent band deformations in MATTG.[image: ]


Fig. 3: Spectroscopic gap in the âˆ’3 < v < âˆ’2 range and signatures of unconventional superconductivity.[image: ]


Fig. 4: Peakâ€“dipâ€“hump structure in MATTG.[image: ]
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Extended data figures and tables

Extended Data Fig. 1 Spectroscopy of twisted bilayer and twisted trilayer graphene.
a, Point spectra of twisted bilayer graphene (TBG) on an AA site at a twist angle Î¸â€‰=â€‰1.44Â°, from a bilayer region found in the same sample. b, Point spectra of twisted trilayer graphene (TTG) on an AAA site at a twist angle Î¸â€‰=â€‰1.45Â°. Unlike TBG at the similar angle, signatures of correlations, such as enhancement of VHS separations at charge neutrality and cascade of flavour symmetry breaking, are observed. c, Linecuts taken from a, b around vâ€‰=â€‰âˆ’4 (white dashed lines). While the dI/dV âˆ¼ LDOS between the flat bands and the remote band is zero for TBG, the value is finite for TTG due to the existence of the additional Dirac cones.


Extended Data Fig. 2 Comparison between spectra on ABA and AAA sites at finite fields.
a, b, Point spectroscopy as a function of VGate on ABA stacked (a, the same as panel Fig. 2d) and on AAA stacked (b) region (Bâ€‰=â€‰3â€‰T, Î¸â€‰=â€‰1.46Â°). In comparison, flat bands appear to be more prominent on the AAA site (b), while LLs from Dirac-like dispersion and dispersive bands appear more pronounced at ABA site. This is a direct consequence of LDOS from the flat bands being localized on the AAA sites. The LDOS from Dirac-like bands is spatially uniformly distributed.


Extended Data Fig. 3 Distinguishing dispersive band LLs and Dirac band LLs.
a, b, Point spectroscopy as a function of VGate on ABA stacked (a) and AAA stacked (b) region (Bâ€‰=â€‰8â€‰T, Î¸â€‰=â€‰1.46Â°). Zeroth LL from Dirac dispersion is clearly distinguished from other LLs as it crosses the flat band. Other LLs from Dirac dispersion is distinguished from the dispersive band from being parallel to the zeroth LL as a function of doping. Additional LL is observed at this high magnetic field at VGateâ€‰>â€‰12â€‰V which is more pronounced at AAA stacked region and can be attributed to second Dirac cone due to finite displacement field present at these VGate.


Extended Data Fig. 4 Spectroscopy near vâ€‰=â€‰âˆ’2.
Linecuts taken from Fig. 3a for VGate ranging from âˆ’6.3â€‰V to âˆ’7.4â€‰V in 100â€‰mV steps. Starting from top, the observed gap is highly asymmetric and gradually evolves to the more symmetric spectrum on the bottom. Vertical dashed line shows the position of VBiasâ€‰=â€‰0â€‰mV. We interpret that asymmetric gap (brown lines) corresponds to correlated insulator regime, while the symmetric gap (black lines) indicates superconducting regime.


Extended Data Fig. 5 Spectral features around CNP and their comparison to the superconducting (SC) gap at vâ€Šâ€Šâ€Šâ‰ˆâ€Šâ€Šâ€Šâ€Šâˆ’2.1.
a, Zoom-in 2D gate spectroscopy of Fig. 1f in the main text. Green triangles mark the position of LDOS suppression around VBiasâ€‰=â€‰0â€‰mV at multiple VGate. b, Linecuts of (a) at VGateâ€‰=â€‰1.4â€‰V to 0â€‰V as indicated by numbers (in volts) indicated in the legend. Green triangles mark the position of same LDOS suppression in (a). Line traces are offset for clarity. Red dashed line is linecut at VGateâ€‰=â€‰âˆ’7.6â€‰V from same 2D gate spectroscopy in Fig. 1f of the main text showing the spectrum of SC gap.


Extended Data Fig. 6 Andreev reflection signal from point contact spectroscopy of MATTG.
a, Point contact conductance (dI/dV) spectroscopy as a function of VGate at twist angle Î¸â€‰=â€‰1.42Â° at Tâ€‰=â€‰400â€‰mK. The black box highlights the filling factor range âˆ’3 < v < âˆ’2.2 where clear signatures of the we Andreev reflection are observed. b, Linecut of point contact dI/dV as a function of VGate. Grey region marks the filling factor range where Andreev reflection signal is observed. c, PCS dI/dV spectra for 4 different perpendicular magnetic field at twist angle Î¸â€‰=â€‰1.44Â°. Lines are offset for clarity. d, PCS dI/dV conductance as a function of temperature and VBias. e, Linecuts from d for Tâ€‰=â€‰0.4 âˆ’ 1.1â€‰K and the additional trace at Tâ€‰=â€‰1.7â€‰K showing the suppression of the Andreev reflection. These temperatures are slightly smaller (by a factor of 1.5âˆ’2) compared to the temperature scales where coherence peaks get completely suppressed.


Extended Data Fig. 7 Additional datasets showing magnetic field and temperature dependence of spectroscopic gap in the âˆ’3 < v < âˆ’2 range.
aâ€“d, Point spectroscopy as a function of VGate at twist angle of Î¸â€‰=â€‰1.51Â° at magnetic field Bâ€‰=â€‰0â€‰T (a), Bâ€‰=â€‰300â€‰mT (b), Bâ€‰=â€‰600â€‰mT (c), Bâ€‰=â€‰1â€‰T (d). e, Line traces showing magnetic field dependence for VGateâ€‰=â€‰âˆ’7.8â€‰V (U-shaped regime). Colour coding corresponds to magnetic field Bâ€‰=â€‰0, 0.1, 0.2, 0.3, 0.4, 0.4, 0.8, 1â€‰T. Plots are offset for clarity. f, g, Gate spectroscopy measured at Bâ€‰=â€‰2â€‰T (f) and Bâ€‰=â€‰4â€‰T (g), for Î¸â€‰=â€‰1.54Â° featuring gapped spectrum persisting \(B\gtrsim 4\,{\rm{T}}\) (data taken at different point compared to aâ€“e). hâ€“k, Gate spectroscopy taken at different temperatures Tâ€‰=â€‰400â€‰mK (h), Tâ€‰=â€‰2â€‰K (i), Tâ€‰=â€‰4â€‰K (j), Tâ€‰=â€‰7â€‰K (k). i, Point spectroscopy measured as a function of VBias and temperature at the same point as (hâ€“k) for VGateâ€‰=â€‰âˆ’7.8â€‰V.


Extended Data Fig. 8 Spectroscopic gap in the +2 < v < +3 range.
a, Tunnelling conductance spectroscopy at twist angle of Î¸â€‰=â€‰1.57Â° on AAA stacked region at Tâ€‰=â€‰2â€‰K showing well-developed gapped region on the electron-side. b, Spectroscopy measured at the same region at Tâ€‰=â€‰400â€‰mK. c, Spectroscopy as a function of temperature at the same point as (a, b) for VGateâ€‰=â€‰10â€‰V. d, Spectroscopy focusing on hole doping taken with the same micro-tip. While the spectrum for hole doping (d) shows clear coherence peaks and dipâ€“hump structures these features are absent for the gap on the electron-side. We speculate that for electron doping, the coherence peaks are suppressed even at our base temperature (Tâ€‰=â€‰400â€‰mK), which would suggest that the observed gap corresponds to pseudogap phase. However, further investigation is needed to confirm this scenario and rule out other possible origins.


Extended Data Fig. 9 Normalization of tunnelling conductance and fitting.
a, Tunnelling conductance measured on Pb (110) surface at Tâ€‰=â€‰400â€‰mK showing superconducting gap. Blue dashed line is Dynes formula fit with two gaps with following parameters, Î”1â€‰=â€‰1.42â€‰meV, Î”2â€‰=â€‰1.26â€‰meV, Î“â€‰=â€‰10â€‰Î¼eV, Tâ€‰=â€‰400â€‰mK used to obtain the base temperature. b, Same data as Fig. 3a showing larger VBias range. Black dashed lines mark gate voltages VGateâ€‰=â€‰âˆ’7.5, âˆ’7.89, âˆ’8.4â€‰V with the corresponding line traces shown in subsequent panels. c, Line cut in the U-shaped regime (VGateâ€‰=â€‰âˆ’7.5â€‰V). Red dotted line is polynomial fitting curve obtained as described in Supplementary Information 4. d, Normalized data obtained by dividing the raw data (black line in c) by polynomial fit (red line in c). Blue line is Dynes formula fit with isotropic gap. e, Same data as d with Dynes formula fits using different types of the pairing gap symmetry: s + id pairing gap with Î”sâ€‰=â€‰0.88â€‰meV, Î”dâ€‰=â€‰1.10â€‰meV, Î“â€‰=â€‰135â€‰eV (brown); d + id pairing gap with Î”d1â€‰=â€‰0.85â€‰meV, Î”d2â€‰=â€‰1.35â€‰meV, Î“â€‰=â€‰135â€‰eV (cyan). f, In the V-shaped regime (VGateâ€‰=â€‰âˆ’7.89â€‰V). g, Normalized data from f and Dynes formula fit using an isotropic gap (blue). h, Normalized data from f with Dynes formula fits using a nodal gap with Î”â€‰=â€‰1.44â€‰meV (green). i, Another linecut in the V-shaped regime (VGateâ€‰=â€‰âˆ’8.4â€‰V). j, Normalized data from i and Dynes formula fit using an isotropic gap (blue, purple). k, Normalized data from i and Dynes formula fits green line is nodal gap with Î”â€‰=â€‰1.26â€‰meV.


Extended Data Fig. 10 Comparing Nodal and s-wave pairing symmetry fit in the V-shaped region.
a, b, Normalized dI/dV spectrum and its nodal (a) and s-wave (b) fit at VGateâ€‰=â€‰âˆ’8.4â€‰V. Fit parameters Î” and Î“ are obtained by performing least square method within âˆ’2Î”c to 2Î”c VBias range where Î”c is 1.04â€‰meV defined by half of the separation between coherence peaks. Nodal fit from 1Î”c to 1Î”c shows almost The inset is a zoom-in around VBiasâ€‰=â€‰0â€‰mV where the deviation between the two is largest. c, d, Nodal (c) and s-wave (d) fit for same data in (a, b) with fixed Î” so that the position of the coherence peak from the fit curve matches to the position of the coherence peak in the data. Fit parameter Î“ is obtained by fitting within âˆ’2Î”c to 2Î”c. S-wave fit shows even larger deviation from the data in this case. e, f, Nodal (e) and s-wave(f) fit for the same data in (a, b) where fit parameters Î” and Î“ are obtained within reduced VBias range âˆ’0.5Î”c c to 0.5Î”c. All Ï‡2/df values are calculated within the VBias range where least square method is performed.


Extended Data Fig. 11 Dynes formula fit to nodal and s-wave gap in the U-shaped region.
a, b, Normalized dI/dV spectrum and its nodal fit (a) and s-wave fit (b) at VGateâ€‰=â€‰âˆ’7.4â€‰V. Fit parameters Î” and Î“ are obtained by performing least square optimization in âˆ’2Î”c to 2Î”c range of VBias, where Î”câ€‰=â€‰1.2â€‰meV. c, Same data as (a, b) with fit parameters obtained from reduced VBias range âˆ’0.5Î”c to 0.5Î”c. This gives better fit around VBiasâ€‰=â€‰0â€‰meV. Ï‡2 values are calculated within the VBias range where least square optimization is performed.
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