Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hadean isotopic fractionation of xenon retained in deep silicates

Abstract

Our understanding of atmosphere formation essentially relies on noble gases and their isotopes, with xenon (Xe) being a key tracer of the early planetary stages. A long-standing issue, however, is the origin of atmospheric depletion in Xe1 and its light isotopes for the Earth2 and Mars3. Here we report that feldspar and olivine samples confined at high pressures and high temperature with diluted Xe and krypton (Kr) in air or nitrogen are enriched in heavy Xe isotopes by +0.8 to +2.3‰ per amu, and strongly enriched in Xe over Kr. The upper +2.3‰ per amu value is a minimum because quantitative trapping of unreacted Xe, either in bubbles or adsorbed on the samples, is likely. In light of these results, we propose a scenario solving the missing Xe problem that involves multiple magma ocean stage events at the proto-planetary stage, combined with atmospheric loss. Each of these events results in trapping of Xe at depth and preferential retention of its heavy isotopes. In the case of the Earth, the heavy Xe fraction was later added to the secondary CI chondritic atmosphere through continental erosion and/or recycling of a Hadean felsic crust.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Xenon isotopic spectra.
Fig. 2: Full Xe isotopic dataset for crystalline feldspar and olivine.
Fig. 3: Xe trapping-at-depth scenario.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information file, and are available on the Zenodo repository (https://doi.org/10.5281/zenodo.6076901). Source data are provided with this paper.

References

  1. Anders, E. & Owen, T. Mars and Earth: origin and abundance of volatiles. Science 198, 453–465 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Krummenacher, D., Merrihue, C. M., Pepin, R. O. & Reynolds, J. H. Meteoritic krypton and barium versus the general isotopic anomalies in xenon. Geochim. Cosmochim. Acta 26, 231–249 (1962).

    Article  ADS  CAS  Google Scholar 

  3. Swindle, T. D., Caffee, M. W. & Hohenberg, C. M. Xenon and other noble gases in shergottites. Geochim. Cosmochim. Acta 50, 1001–1015 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Ozima, M. & Podosek, F. A. Formation age of Earth from 129I/127I and 244Pu/238U systematics and the missing Xe. J. Geophys. Res. 104, 25493–25499 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Avice, G., Marty, B. & Burgess, R. The origin and degassing history of the Earth’s atmosphere revealed by Archean xenon. Nat. Commun. 8, 15455 (2017).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dauphas, N. & Morbidelli, A. in Geochemical and Planetary Dynamical Views on the Origin of Earth’s Atmosphere and Oceans (eds Holland, H. D. & Turekian, K. K.) 115–234 (Elsevier, 2014).

  7. Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Hébrard, E. & Marty, B. Coupled noble gas-hydrocarbon evolution of the early Earth atmosphere upon solar UV irradiation. Earth Planet. Sci. Lett. 385, 40–48 (2014).

    Article  ADS  CAS  Google Scholar 

  9. Zahnle, K. J., Gaseca, M. & Catling, D. C. Strange messenger: a new history of hydrogen on Earth, as told by xenon. Geochim. Cosmochim. Acta 244, 56–85 (2019).

    Article  ADS  CAS  Google Scholar 

  10. Dauphas, N. The dual origin of the terrestrial atmosphere. Icarus 165, 326–333 (2003).

    Article  ADS  CAS  Google Scholar 

  11. Bekaert, D. V., Broadley, M. W. & Marty, B. The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov–Gerasimenko. Sci. Rep. 10, 5796 (2020).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  12. Marty, B. et al. Xenon isotopes in 67P/Churyumov–Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069–1072 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 50, 1110–1113 (2020).

    Article  ADS  CAS  Google Scholar 

  14. Javoy, M. et al. The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010).

    Article  ADS  CAS  Google Scholar 

  15. Boyet, M. et al. Enstatite chondrites EL3 as building blocks for the Earth: the debate over the 146Sm–142Nd systematics. Earth Planet. Sci. Lett. 214, 427–442 (2018).

    Article  ADS  CAS  Google Scholar 

  16. Sanloup, C. Noble gas reactivity in planetary interiors. Front. Phys. 8, 157 (2020).

    Article  Google Scholar 

  17. Dewaele, A. et al. Synthesis and stability of xenon oxides Xe2O5 and Xe3O2 under pressure. Nat. Chem. 8, 784–790 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Stavrou, E. et al. Synthesis of xenon and iron-nickel intermetallic compounds at Earth’s core thermodynamic conditions. Phys. Rev. Lett. 120, 096001 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Crépisson, C., Blanchard, M., Lazzeri, M., Balan, E. & Sanloup, C. New constraints on Xe incorporation mechanisms in olivine from first-principles calculations. Geochim. Cosmochim. Acta 222, 146–155 (2018).

    Article  ADS  CAS  Google Scholar 

  20. Probert, M. I. J. An ab initio study of xenon retention in α-quartz. J. Phys. Condens. Matter 22, 025501 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Crépisson, C. et al. The Xe-SiO2 system at moderate pressure and high temperature. Geochem. Geophys. Geosyst. 20, 992–1003 (2019).

    Article  ADS  CAS  Google Scholar 

  22. Shcheka, S. S. & Keppler, H. The origin of the terrestrial noble-gas signature. Nature 490, 531–535 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Parai, R. & Mukhopadhyay, S. Xenon isotopic constraints on the history of volatile recycling into the mantle. Geochim. Cosmochim. Acta 560, 223–227 (2018).

    CAS  Google Scholar 

  24. Krantz, J. A., Parman, S. W. & Kelley, S. P. Recycling of heavy noble gases by subduction of serpentinite. Earth Planet. Sci. Lett. 521, 120–127 (2019).

    Article  ADS  CAS  Google Scholar 

  25. Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Moreira, M., Kunz, J. & Allègre, C. Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Hennecke, E. W. & Manuel, O. K. Noble gases in Hawaiian xenolith. Nature 257, 778–780 (1975).

    Article  ADS  CAS  Google Scholar 

  28. Poreda, R. J. & Farley, K. A. Rare gases in Samoan xenoliths. Earth Planet. Sci. Lett. 113, 129–144 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Czuppon, G., Matsumoto, T., Handler, M. R. & Matsuda, J.-I. Noble gases in spinel peridotite xenoliths from Mt Quincan, North Queensland, Australia: undisturbed MORB-type noble gases in the subcontinental lithospheric mantle. Chem. Geol. 266, 19–28 (2009).

    Article  ADS  CAS  Google Scholar 

  30. Kuroda, P. K., Sherrill, R. D. & Jackson, K. C. Abundances and isotopic compositions of rare gases in granites. Geochem. J. 11, 75–90 (1977).

    Article  ADS  CAS  Google Scholar 

  31. Palma, R. L., Rao, M. N., Rowe, M. W. & Koeberl, C. Krypton and xenon fractionation in North American tektites. Meteor. Planet. Sci. 32, 9–14 (1997).

    Article  ADS  CAS  Google Scholar 

  32. Bekaert, D. V., Avice, G., Marty, B. & Henderson, B. Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon. Geochim. Cosmochim. Acta 218, 114–1315 (2017).

    Article  ADS  CAS  Google Scholar 

  33. Drescher, J., Kirsten, T. & Schäfer, K. The rare gas inventory of the continental crust, recovered by the KTB Continental Deep Drilling project. Earth Plan. Sci. Lett. 154, 247–263 (1998).

    Article  ADS  CAS  Google Scholar 

  34. Elkins-Tanton, L. T., Burgess, S. & Yin, Q.-Z. The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304, 326–336 (2011).

    Article  ADS  CAS  Google Scholar 

  35. Frossard, P., Boyet, M., Bouvier, A., Hammouda, T. & Monteux, J. Evidence for anorthositic crust formed on an inner solar system planetesimal. Geochem. Persp. Lett. 11, 28–32 (2019).

    Article  Google Scholar 

  36. Bouvier, L. C. et al. Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 558, 586–589 (2018).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  37. Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth’s mantle. Geochim.Cosmochim. Acta 70, 164–191 (2006).

    Article  ADS  CAS  Google Scholar 

  38. Harrison, T. M., Schmitt, A. K., McCulloch, M. T. & Lovera, O. M. Early (≥4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett. 268, 476–486 (2008).

    Article  ADS  CAS  Google Scholar 

  39. Erkaev, N. V. et al. Escape of the martian protoatmosphere and initial water inventory. Planet. Space Sci. 98, 106–119 (2014).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  40. Tucker, J. M. & Mukhopadhyay, S. Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth Planet. Sci. Lett. 393, 254–265 (2014).

    Article  ADS  CAS  Google Scholar 

  41. Jambon, A., Weber, H. & Braun, O. Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600 °C. Geochemical implications. Geochim. Cosmochim. Acta 50, 401–408 (1986).

    Article  ADS  CAS  Google Scholar 

  42. Guillot, B. & Sator, N. Noble gases in high-pressure silicate liquids: a computer simulation study. Geochim. Cosmochim. Acta 80, 51–69 (2012).

    Article  ADS  CAS  Google Scholar 

  43. Brož, M., Chrenko, O., Nesvorný, D. & Dauphas, N. Early terrestrial planet formation by torque-driven convergent migration of planetary embryos. Nat. Astron. 5, 898–902 (2021).

    Article  ADS  Google Scholar 

  44. Schlichting, H. E. & Mukhopadhyay, S. Atmosphere impact losses. Space Sci. Rev. 214, 34 (2018).

    Article  ADS  Google Scholar 

  45. Harper, C. L. Evidence for 92gNb in the early solar system and evaluation of a new p-process cosmochronometer from 92gNb/92Mo. Astrophys. J. 466, 437–456 (1996).

    Article  ADS  CAS  Google Scholar 

  46. Jaupart, E., Charnoz, S. & Moreira, M. Primordial atmosphere incorporation in planetary embryos and the origin of neon in terrestrial planets. Icarus 293, 199–205 (2017).

    Article  ADS  CAS  Google Scholar 

  47. Crépisson, C. et al. Kr environment in feldspathic glass and melt: a high pressure, high temperature X-ray absorption study. Chem. Geol. 493, 525–531 (2018).

    Article  ADS  CAS  Google Scholar 

  48. Kohara, S. et al. Relationship between topological order and glass forming ability in densely packed enstatite and forsterite composition glasses. Proc. Natl Acad. Sci. USA 108, 14780–14785 (2011).

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  49. Holland, G., Cassidy, M. & Ballentine, C. J. Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 1522–1525 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Heber, V. S., Brooker, R. A., Kelley, S. P. & Wood, B. J. Crystal-melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim. Cosmochim. Acta 71, 1041–1061 (2007).

    Article  ADS  CAS  Google Scholar 

  51. Sanloup, C., Schmidt, B. C., Gudfinnsson, G., Dewaele, A. & Mezouar, M. Xenon and argon: a contrasting behavior in olivine at depth. Geochim. Cosmochim. Acta 75, 6271–6284 (2011).

    Article  ADS  CAS  Google Scholar 

  52. Péron, S. & Moreira, M. Onset of volatile recycling into the mantle determined by xenon anomalies. Geochem. Persp. Lett. 9, 21–25 (2018).

    Article  Google Scholar 

  53. Tolstikhin, I. N. & O’nions, R. K. The Earth’s missing xenon: a combination of early degassing and of rare gas loss from the atmosphere. Chem. Geol. 115, 1–6 (1994).

    Article  ADS  CAS  Google Scholar 

  54. Yokochi, R. & Marty, B. Geochemical constraints on mantle dynamics in the Hadean. Earth Planet. Sci. Lett. 238, 17–30 (2005).

    Article  ADS  CAS  Google Scholar 

  55. Sano, Y., Marty, B. & Burnard, P. in Noble Gases in the Atmosphere (ed. Burnard, P.) 17–31 (Springer-Verlag, 2013).

  56. Crépisson, C. ‘Missing Xenon’: Experimental and Theoretical Study of Xe Storage in Crustal and Upper Mantle Minerals. Ph.D. thesis, Sorbonne Univ. (2018).

  57. Prouteau, G., Scaillet, B., Pichavant, M. & Maury, R. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410, 197–200 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Boettcher, S. L., Guo, Q. & Montana, A. A simple device for loading gases in high-pressure experiments. Am. Mineral. 74, 1383–1384 (1989).

    CAS  Google Scholar 

  59. Horlait, D. et al. A new thermo-desorption laser-heating setup for studying noble gases diffusion and release from materials at high temperatures. Rev. Sci. Instr. 92, 124102 (2021).

    Article  ADS  CAS  Google Scholar 

  60. Bevington, P. R. & Robinson, D. K. Data Reduction and Error Analysis for Physical Sciences 3rd edn (McGraw-Hill, 2003).

Download references

Acknowledgements

The research leading to these results was funded by the French CNRS PRIME80 and CNRS MITI Défi ISOTOP programmes. We acknowledge B. Lavielle and D. Bekaert for insightful discussions, R. Faure and B.A. Thomas for their technical assistance on MS measurements and T. Chematinov for his useful and appreciated participation in carrying out the step heating experiments. SEM measurements were done at the FIB and SEM facility at IMPMC, supported by Région Ile de France grant SESAME 2006 N°I-07-593/R, and by the French National Research Agency (ANR) grant no. ANR-07-BLAN-0124-01. We acknowledge G. Prouteau for providing the San Carlos olivine samples, and the mineralogical collection at Sorbonne Université for providing the feldspar samples.

Author information

Authors and Affiliations

Authors

Contributions

C.S. and D.H. devised the project, I.R. and C.S. carried out the high P-T experiments, I.R., D.H. and E.G. carried out analyses on the noble gas spectrometer. C.S. wrote the paper with input from I.R. and D.H.

Corresponding author

Correspondence to Chrystèle Sanloup.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Ray Burgess and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer files are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1

a, Xe fractionation as a function of the time spent between the synthesis and the mass spectrometry analysis, and b, Xe fractionation as a function of the sample mass. Data points for samples characterized, as expected, by an absence of detectable fractionation (runs at 1,400 °C or with 100% Xe loading gas) were removed from this Figure for the sake of clarity. Vertical error bars represent the SE for isotopic fractionation calculation

Source data

Extended Data Fig. 2 Summary of measured δn values in experiments realized with laser heating increasing steps.

Instead of analysing all Xe released after laser melting of the fragments, the tuneable heating laser was first set at lower powers (indicated as the power voltage V applied to the laser source). Each heating plateau was kept for a few minutes and the released Xe were analysed by mass spectrometry using the same general protocol described in the Methods section. A handful attempts were made on olivine and sanidine 1 samples. They all point toward Xe predominantly exiting the material at the fusion point (or close to). Only two experiments with sanidine, S1–11d with 1%Xe gas and S1–19b with 100%Xe gas, led to the successful measurement for all of the heating steps of both δn and [Xe] values, as reported in the present Figure. Each point area is proportional to the Xe content ([Xe]) extracted at the heating plateau. The stars are δn values combining all δn measured and weighted by each [Xe], in other words the δn we would had measured if the sample fragment had been directly melted. For S1–11d (1% Xe gas), we observe variations of δn by a roughly 2-fold factor along the heating ramp. For this same sample, an unfractionated component was evidenced for the lowest laser voltage, but represent a marginal part (5.3% of the total released Xe). Since for similar heating power, ~45% of the total Xe of S1–19b (100% Xe gas) was released, this low T release is possibly associated to Xe trapped as bubbles. At the highest T, i.e. at the sample melting point, for S1–19b and S1–11d respective 0.54 ±0.12 ‰/amu and 0.61 ±0.11 ‰/amu fractionations were measured, which points towards a Xe component with some fractionated Xe, but still with an unfractionated component lowering the overall measured δn. This indirectly confirms that Xe chemical incorporation and the associated isotopic fractionation occurs in all samples prepared at T ≤ 1,100  °C; δn close to zero for samples prepared with 100% Xe gas being only due to a disruptive phenomenon whose extent is proportional to Xe partial pressure: oversaturation of the mineral (bubble formation, as seen in Extended Data Fig. 3). Detailed data used to construct this Figure are found in the results Tables for S111d and S1–19b given in Supplementary information file, while synthesis conditions are found in Extended Data Table 1

Source data

Extended Data Fig. 3 SEM images in AsB mode.

a and b, Feldspar sanidine 1 loaded with 1 mol% Xe and 1 mol% Kr enriched air (identical to syntheses S1–13 and S1–14). Round dark area in b are synthesis gas bubbles revealed and opened by polishing. c, a sanidine 1 loaded with 100 mol% Xe (identical to syntheses S1–17, S1–18 and S1–19). Brighter areas in c are Xe bubbles, found in oversaturated samples, i.e. loaded with 100 mol% Xe gas.

Extended Data Fig. 4 Non-radiogenic Xe data reveal the possibility of Archean atmosphere contribution to mantle Xe within the present scenario of an early fractionated silicate Earth.

Xe measured in deep crustal fluids49 (black and grey circles), MORB popping rock52 (brown circle), air55, Archean atmosphere as trapped in crustal samples (dark blue and black squares); and primordial components (green and maroon circles). All data are shown with associated SE. Alternatively, the deep fluids and MORB popping rock enrichment in Xe light isotopes compared to air could be explained by input from a slightly less fractionated lower mantle resulting from the last magma ocean stage having affected only the upper mantle.

Extended Data Table 1 Summary of all experimental synthesis runs, Xe contents and average fractionations
Extended Data Table 2 Chemical composition of starting and recovered samples

Supplementary information

Supplementary Data

Detailed mass spectrometry results.

Peer Review File

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rzeplinski, I., Sanloup, C., Gilabert, E. et al. Hadean isotopic fractionation of xenon retained in deep silicates. Nature 606, 713–717 (2022). https://doi.org/10.1038/s41586-022-04710-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04710-4

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing