Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of human chromatin-remodelling PBAF complex bound to a nucleosome

Abstract

DNA wraps around the histone octamer to form nucleosomes1, the repeating unit of chromatin, which create barriers for accessing genetic information. Snf2-like chromatin remodellers couple the energy of ATP binding and hydrolysis to reposition and recompose the nucleosome, and have vital roles in various chromatin-based transactions2,3. Here we report the cryo-electron microscopy structure of the 12-subunit human chromatin-remodelling polybromo-associated BRG1-associated factor (PBAF) complex bound to the nucleosome. The motor subunit SMARCA4 engages the nucleosome in the active conformation, which reveals clustering of multiple disease-associated mutations at the interfaces that are essential for chromatin-remodelling activity. SMARCA4 recognizes the H2A–H2B acidic pocket of the nucleosome through three arginine anchors of the Snf2 ATP coupling (SnAc) domain. PBAF shows notable functional modularity, and most of the auxiliary subunits are interwoven into three lobe-like submodules for nucleosome recognition. The PBAF-specific auxiliary subunit ARID2 acts as the structural core for assembly of the DNA-binding lobe, whereas PBRM1, PHF10 and BRD7 are collectively incorporated into the lobe for histone tail binding. Together, our findings provide mechanistic insights into nucleosome recognition by PBAF and a structural basis for understanding SMARCA4-related human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall structure of human PBAF bound to the nucleosome.
Fig. 2: Structure of the motor domain bound to the nucleosome in the active state.
Fig. 3: Structure of the SRM of the PBAF complex.
Fig. 4: Structures of the PBAF-specific subunits.

Similar content being viewed by others

Data availability

Coordinates and Cryo-EM density maps have been deposited in the Electron Microscopy Data Bank and Protein Data Bank under accession codes EMD-31926, 7VDV (PBAF–NCP complex); EMD-31925, 7VDT (the motor–NCP complex); EMD-31927 (NBL–DBL); and EMD-31928 (NBL–HBL). Source data are provided with this paper.

References

  1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 angstrom resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Yan, L. & Chen, Z. A unifying mechanism of DNA translocation underlying chromatin remodeling. Trends Biochem. Sci. 45, 217–227 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Alfert, A., Moreno, N. & Kerl, K. The BAF complex in development and disease. Epigenetics Chromatin 12, 19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI–SNF complex. EMBO J. 15, 5370–5382 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sokpor, G., Xie, Y., Rosenbusch, J. & Tuoc, T. Chromatin remodeling BAF (SWI/SNF) complexes in neural development and disorders. Front. Mol. Neurosci. 10, 243 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hodges, C., Kirkland, J. G. & Crabtree, G. R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect Med. 6, a026930 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Mittal, P. & Roberts, C. W. M. The SWI/SNF complex in cancer—biology, biomarkers and therapy. Nat. Rev. Clin. Oncol. 17, 435–448 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sundaramoorthy, R. & Owen-Hughes, T. Chromatin remodelling comes into focus. F1000Res 9, https://doi.org/10.12688/f1000research.21933.1 (2020).

  11. Pan, J. et al. The ATPase module of mammalian SWI/SNF family complexes mediates subcomplex identity and catalytic activity-independent genomic targeting. Nat. Genet. 51, 618–626 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakayama, R. T. et al. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat. Genet. 49, 1613–1623 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lemon, B., Inouye, C., King, D. S. & Tjian, R. Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature 414, 924–928 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Pan, D. et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770–775 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Ho, P. J., Lloyd, S. M. & Bao, X. Unwinding chromatin at the right places: how BAF is targeted to specific genomic locations during development. Development 146, dev178780 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leschziner, A. E., Lemon, B., Tjian, R. & Nogales, E. Structural studies of the human PBAF chromatin-remodeling complex. Structure 13, 267–275 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Mashtalir, N. et al. A structural model of the endogenous human BAF complex informs disease mechanisms. Cell 183, 802–817.e824 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He, S. et al. Structure of nucleosome-bound human BAF complex. Science 367, 875–881 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288.e1220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patsialou, A., Wilsker, D. & Moran, E. DNA-binding properties of ARID family proteins. Nucleic Acids Res. 33, 66–80 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Charlop-Powers, Z., Zeng, L., Zhang, Q. & Zhou, M. M. Structural insights into selective histone H3 recognition by the human Polybromo bromodomain 2. Cell Res. 20, 529–538 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Sun, H. et al. Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4. Biochem. Biophys. Res. Commun. 358, 435–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Valencia, A. M. et al. Recurrent SMARCB1 mutations reveal a nucleosome acidic patch interaction site that potentiates mSWI/SNF complex chromatin remodeling. Cell 179, 1342–1356.e1323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ye, Y. et al. Structure of the RSC complex bound to the nucleosome. Science 366, 838–843 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. He, Z., Chen, K., Ye, Y. & Chen, Z. Structure of the SWI/SNF complex bound to the nucleosome and insights into the functional modularity. Cell Discov. 7, 28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wagner, F. R. et al. Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature 579, 448–451 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Han, Y., Reyes, A. A., Malik, S. & He, Y. Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature 579, 452–455 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  30. Yan, L., Wang, L., Tian, Y., Xia, X. & Chen, Z. Structure and regulation of the chromatin remodeller ISWI. Nature 540, 466–469 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Liu, X., Li, M., Xia, X., Li, X. & Chen, Z. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Nature 544, 440–445 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Yan, L., Wu, H., Li, X., Gao, N. & Chen, Z. Structures of the ISWI–nucleosome complex reveal a conserved mechanism of chromatin remodeling. Nat. Struct. Mol. Biol. 26, 258–266 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Li, M. et al. Mechanism of DNA translocation underlying chromatin remodelling by Snf2. Nature 567, 409–413 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Hodges, H. C. et al. Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat. Struct. Mol. Biol. 25, 61–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Dykhuizen, E. C. et al. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature 497, 624–627 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Sen, P., Ghosh, S., Pugh, B. F. & Bartholomew, B. A new, highly conserved domain in Swi2/Snf2 is required for SWI/SNF remodeling. Nucleic Acids Res. 39, 9155–9166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sen, P. et al. The SnAC domain of SWI/SNF is a histone anchor required for remodeling. Mol. Cell. Biol. 33, 360–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baker, R. W. et al. Structural insights into assembly and function of the RSC chromatin remodeling complex. Nat. Struct. Mol. Biol. 28, 71–80 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. McGinty, R. K. & Tan, S. Principles of nucleosome recognition by chromatin factors and enzymes. Curr. Opin. Struct. Biol. 71, 16–26 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, L., Chen, K. & Chen, Z. Structural basis of ALC1/CHD1L autoinhibition and the mechanism of activation by the nucleosome. Nat. Commun. 12, 4057 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Gamarra, N., Johnson, S. L., Trnka, M. J., Burlingame, A. L. & Narlikar, G. J. The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h. eLife 7, e35322 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bacic, L. et al. Structure and dynamics of the chromatin remodeler ALC1 bound to a PARylated nucleosome. eLife 10, e71420 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dao, H. T., Dul, B. E., Dann, G. P., Liszczak, G. P. & Muir, T. W. A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing. Nat. Chem. Biol. 16, 134–142 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Emery, P., Durand, B., Mach, B. & Reith, W. RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. Nucleic Acids Res. 24, 803–807 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang, H. et al. Chromatin remodeling factor ARID2 suppresses hepatocellular carcinoma metastasis via DNMT1–Snail axis. Proc. Natl Acad. Sci. USA 117, 4770–4780 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Gao, W., Li, W., Xiao, T., Liu, X. S. & Kaelin, W. G. Jr Inactivation of the PBRM1 tumor suppressor gene amplifies the HIF-response in VHL−/− clear cell renal carcinoma. Proc. Natl Acad. Sci. USA 114, 1027–1032 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Allen, M. D., Freund, S. M., Zinzalla, G. & Bycroft, M. The SWI/SNF subunit INI1 contains an N-terminal winged helix DNA binding domain that is a target for mutations in schwannomatosis. Structure 23, 1344–1349 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chabanon, R. M., Morel, D. & Postel-Vinay, S. Exploiting epigenetic vulnerabilities in solid tumors: novel therapeutic opportunities in the treatment of SWI/SNF-defective cancers. Semin. Cancer Biol. 61, 180–198 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Barisic, D., Stadler, M. B., Iurlaro, M. & Schubeler, D. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 569, 136–140 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. Luger, K., Rechsteiner, T. J. & Richmond, T. J. Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol. Biol. https://doi.org/10.1385/1-59259-681-9:1 (1999).

  52. Dyer, P. N. et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 375, 23–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, Z. L. et al. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat. Commun. 10, 3404 (2019).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  54. Lei, J. & Frank, J. Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope. J. Struct. Biol. 150, 69–80 (2005).

    Article  PubMed  Google Scholar 

  55. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang, N. et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell 184, 370–383.e313 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Patel, A. B. et al. Architecture of the chromatin remodeler RSC and insights into its nucleosome engagement. eLife 8, e54449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bastiray, A., Giri, M. & Singh, M. Sequential backbone resonance assignment of AT-rich interaction domain of human BAF200. Biomol. NMR Assign. 13, 115–119 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Du, Z. et al. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 16, 5634–5651 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Zhou, N., Wang, H. & Wang, J. EMBuilder: a template matching-based automatic model-building program for high-resolution cryo-electron microscopy maps. Sci Rep. 7, 2664 (2017).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  64. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Makde, R. D., England, J. R., Yennawar, H. P. & Tan, S. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Tsinghua University Branch of the China National Center for Protein Sciences (Beijing) for the cryo-EM facility. This work was supported by the National Key Research and Development Program (2019YFA0508902 to Z.C.), the National Natural Science Foundation of China (32130016 and 31825016 to Z.C.), Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, and Tsinghua-Peking Joint Center for Life Sciences.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. prepared the sample and performed the biochemical analysis. W.Z. did the initial tries. K.C. performed the EM analysis. Z.C. wrote the manuscript with help from all authors. Z.C. directed and supervised all of the research.

Corresponding author

Correspondence to Zhucheng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Blaine Bartholomew, Karl-Peter Hopfner and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 CryoEM analysis of the PBAF-nucleosome complex.

(a) A representative negative staining micrograph from 20 micrographs. (b) A representative cryo-EM micrograph from 19,313 micrographs. (c) 2D class averages of characteristic projection views of cryo-EM particles. (The diameter of the circular mask: 32nm.). (d) Flowchart of the cryo-EM data processing. (e) Angular distributions of the cryo-EM particles in the final round of refinement. (f) Resolution estimation of the EM maps. Gold standard Fourier shell correlation (FSC) curves, showing the overall nominal resolutions of 3.4 Å, 2.8 Å, 3.2 Å, 3. 2 Å for the overall complex, motor-nucleosome region, the left part (NBL-DBL) and the right part (NBL-HBL) of the SRM, respectively. (g). Model-map FSC plot calculated by Phenix between the map and the model.

Extended Data Fig. 2 Local density maps of the PBAF-nucleosome complex.

(a) Local cryoEM maps of the motor module at a resolution of 2.8 Å. (b) Local cryoEM maps of the SRM at a resolution of 3.2 Å.

Extended Data Fig. 3 Inter-molecular interactions of the PBAF-nucleosome complex detected by CL-MS.

Subunits are colored as in Fig. 1. Cross-links supported by spatial proximity in the cryoEM structure are shown.

Extended Data Fig. 4 Exit DNA unwrapping and AD binding to NBL.

(a) Local cryoEM density of the nucleosomal DNA bound by the PBAF complex, superimposed with the DNA from the “601” nucleosome (colored grey, PDB code 3MVD)65. (b) Binding of the AD to PHF10 and SMARCB1 in the NBL. The circled region is enlarged in (c). (c) Binding of the AD to the CTL of PHF10. Multiple-sequence alignments of Arid2 proteins and human ARID1a around the binding interface. Conserved residues are highlighted in yellow. (d) Two views of the nucleosome together with the NBL, superimposed with the DNA from the “601” nucleosome (colored grey). The electrostatics of AD of ARID2 is calculated with Pymol.

Extended Data Fig. 5 Structural comparison of the motor domains bound to the nucleosome.

(a) Comparison of the motors of PBAF (colored as Fig. 2) and recombinant BAF (colored blue, PDB code 6ltj)19 bound to the nucleosome. The histone octamers are aligned. (b) Comparison of the motors of PBAF and endogenous BAF (colored pink, PBDDEV_00000056)18 bound to the nucleosome. The histone octamers are aligned. (c-d) Structural comparisons of the motor domains of PBAF (lobe 1 in green, lobe 2 in cyan), to the recombinant BAF (d, blue, PDB code 6ltj)19, endogenous BAF (e, colored pink, PBDDEV_00000056)18. The structures of lobe 1 are aligned. The boxed regions (the Brace helices and the ATPase pocket) are enlarged for further analysis at the bottom. (e) Comparison of the SMARCA4 motor of the PBAF complex and Snf2 motor bound to the nucleosome (colored yellow, PDB code 5Z3U)33. The histone octamers are aligned. (f) Structural comparisons of the motor domains of PBAF and Snf2 (colored yellow, PDB code 5Z3U). The structures of lobe 1 are aligned. The boxed regions are enlarged for further analyses in g and h.

Extended Data Fig. 6 Additional biochemical analyses.

(a) Representative SDS-PAGE gels of the WT and mutant PBAF complexes from 5 independent experiments. (b) Chromatin remodeling activity of WT and R1372A mutant at a substaturating concentration of enzyme. The nucleosome and the enzyme complex at 10 nM and 5 nM were used, respectively. Representative gel is shown on the top, and quantification of the remodeled product at the bottom. Data are presented as mean values +/− SD (n = 3 technical replicates). (c) Chromatin remodeling activities of different batch preparations of the WT and mutant PBAF complex. Nucleosomes at 10 nM, and the enzyme complex at the indicated concentrations were used. Representative gels are shown on the left, and quantification on the right. Data are presented as mean values +/− SD (n = 3 technical replicates).

Source data

Extended Data Fig. 7 Local structural analysis of PBAF.

(a) Structural comparison of the NBL of PBAF (color coded) and BAF (grey, PBD code 6ltj)19. SMARCB1 is aligned. (b) Nucleosome binding by the FH of PBAF (left), and BAF (right). (c) Structural comparison of the structural core of the HBL of PBAF (color coded) and BAF (grey). The structures of NTD of SMARCA4 are aligned. (d) Structural comparison of the helical bundle of PBAF (color coded) and BAF (grey). The structures of SMARCD1 are aligned. (e) Structural comparison of ARM of ARID2 (colored gold) and ARID1a (colored grey). The HSA helix is partially melted in PBAF, with Arg448 located at the loop region, whereas it is a part of the helix in BAF. (f) Structural comparison of the ARM domains of ARID2 (colored gold) and Rsc9 in RSC (colored grey, PDB code 6K15)25. (g) Structural comparison of DBL of PBAF (color coded) and RSC (grey) around A2BM region. The structures of A2BM and R6BD (Rsc6-binding domain) are aligned. (h) Structural comparison of the structural core of the HBL of PBAF (color coded) and RSC (grey). The structures of the SANT domain of SMARCC and Rsc8 are aligned.

Extended Data Fig. 8 Multiple sequence alignments of ARID2-like proteins.

The AD domain of human ARID1a is included. The conserved residues involved in binding to the PHF10 are highlighted in yellow.

Extended Data Fig. 9 Multiple sequence alignments of PHF10-like proteins.

The conserved residues of CTL involved in binding to the AD domain of ARID2 are highlighted in yellow.

Extended Data Fig. 10 Multiple sequence alignments of PBRM1-like proteins.

Only the sequences of the CTD are shown. The structures of the N-terminal BD, BAH and HMG domains are not resolved in current study, and not included in the alignments.

Extended Data Fig. 11 Structural comparison of PBAF, BAF and RSC bound to the nucleosome.

(a) Structural modularity of PBAF, with the motor, ARP and SRM modules highlighted in different colors. (b-c) Structural modularity of BAF (PDB code 6ltj)19 (b) and RSC (PDB code 6kw3)25 (c), and the comparison with PBAF shown on the right. The histone cores are aligned.

Extended Data Table 1 Cryo-EM data collection, refinement and validation statistics
Extended Data Table 2 Components of the BAF and PBAF complexes

Supplementary information

Supplementary Information

This file contains raw data for Fig. 2f and Supplementary Fig. 6a–c.

Reporting Summary

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Chen, K., Zhang, W. et al. Structure of human chromatin-remodelling PBAF complex bound to a nucleosome. Nature 605, 166–171 (2022). https://doi.org/10.1038/s41586-022-04658-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04658-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing