Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Suppression of black-hole growth by strong outflows at redshifts 5.8–6.6

Abstract

Bright quasars, powered by accretion onto billion-solar-mass black holes, already existed at the epoch of reionization, when the Universe was 0.5–1 billion years old1. How these black holes formed in such a short time is the subject of debate, particularly as they lie above the correlation between black-hole mass and galaxy dynamical mass2,3 in the local Universe. What slowed down black-hole growth, leading towards the symbiotic growth observed in the local Universe, and when this process started, has hitherto not been known, although black-hole feedback is a likely driver4. Here we report optical and near-infrared observations of a sample of quasars at redshifts 5.8 z 6.6. About half of the quasar spectra reveal broad, blueshifted absorption line troughs, tracing black-hole-driven winds with extreme outflow velocities, up to 17% of the speed of light. The fraction of quasars with such outflow winds at z 5.8 is ≈2.4 times higher than at z ≈ 2–4. We infer that outflows at z 5.8 inject large amounts of energy into the interstellar medium and suppress nuclear gas accretion, slowing down black-hole growth. The outflow phase may then mark the beginning of substantial black-hole feedback. The red optical colours of outflow quasars at z 5.8 indeed suggest that these systems are dusty and may be caught during an initial quenching phase of obscured accretion5.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: X-shooter data, composite templates and normalized spectra.
Fig. 2: Properties of C iv BAL quasars.
Fig. 3: Nuclear quasar properties.

Data availability

X-shooter raw data used in this work are publicly available on the ESO Science Archive (http://archive.eso.org/cms.html). Reduced data are available upon request at the date of writing and will be released by the XQR-30 collaboration once observations are completed.

References

  1. Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. Lett. 907, L1 (2021).

    Article  ADS  CAS  Google Scholar 

  2. Neeleman, M. et al. The kinematics of z 6 quasar host galaxies. Astrophys. J. 911, 141 (2021).

    Article  ADS  CAS  Google Scholar 

  3. Volonteri, M. The formation and evolution of massive black holes. Science 337, 544–547 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Van der Vlugt, D. & Costa, T. How AGN feedback drives the size growth of the first quasars. Mon. Not. R. Astron. Soc. 490, 4918–4934 (2019).

    Article  ADS  CAS  Google Scholar 

  5. Hickox, R. C. & Alexander, D. M. Obscured active galactic nuclei. Annu. Rev. Astron. Astrophys. 56, 625 (2018).

    Article  ADS  CAS  Google Scholar 

  6. Weymann, R. J., Morris, S. L., Foltz, C. B. & Hewett, P. C. Comparisons of the emission-line and continuum properties of broad absorption line and normal quasi-stellar objects. Astrophys. J. 373, 23–53 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Gibson, R. R. et al. A catalog of broad absorption line quasars in Sloan Digital Sky Survey Data Release 5. Astrophys. J. 692, 758–777 (2009).

    Article  ADS  CAS  Google Scholar 

  8. Shen, Y. et al. A catalog of quasar properties from Sloan Digital Sky Survey Data Release 7. Astrophys. J. Suppl. Ser. 194, 45 (2011).

    Article  ADS  CAS  Google Scholar 

  9. Cameron, E. On the estimation of confidence intervals for binomial population proportions in astronomy: the simplicity and superiority of the Bayesian approach. Publ. Astron. Soc. Aust. 28, 128–139 (2011).

    Article  ADS  Google Scholar 

  10. Shen, Y. et al. Gemini GNIRS near-infrared spectroscopy of 50 quasars at z 5.7. Astrophys. J. 873, 35 (2019).

    Article  ADS  CAS  Google Scholar 

  11. Schindler, J.-T. et al. The X-shooter/ALMA sample of quasars in the epoch of reionization. I. NIR spectral modeling, iron enrichment, and broad emission line properties. Astrophys. J. 905, 51 (2020).

    Article  ADS  CAS  Google Scholar 

  12. Yang, J. et al. Probing early super-massive black hole growth and quasar evolution with near-infrared spectroscopy of 37 reionization-era quasars at 6.3 < z ≤ 7.64. Astrophys. J. 923, 262 (2021).

    Article  ADS  CAS  Google Scholar 

  13. Allen, J. T., Hewett, P. C., Maddox, N., Richards, G. T. & Belokurov, V. A strong redshift dependence of the broad absorption line quasar fraction. Mon. Not. R. Astron. Soc. 410, 860–884 (2011).

    Article  ADS  CAS  Google Scholar 

  14. Trump, J. R. et al. A catalog of broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release. Astrophys. J. Suppl. Ser. 165, 1–18 (2006).

    Article  ADS  CAS  Google Scholar 

  15. Dai, X., Shankar, F. & Sivakoff, G. R. 2MASS reveals a large intrinsic fraction of BALQSOs. Astrophys. J. 672, 108–114 (2008).

    Article  ADS  Google Scholar 

  16. Bruni, G. et al. The WISSH quasars project. VI. Fraction and properties of BAL quasars in the hyper-luminosity regime. Astron. Astrophys. 630, A111 (2019).

    Article  CAS  Google Scholar 

  17. Wang, F. et al. The discovery of a luminous broad absorption line quasar at a redshift of 7.02. Astrophys. J. Lett. 869, L9 (2018).

    Article  ADS  CAS  Google Scholar 

  18. Rodríguez Hidalgo, P. et al. Survey of extremely high-velocity outflows in Sloan Digital Sky Survey quasars. Astrophys. J. 896, 151 (2021).

    Article  ADS  CAS  Google Scholar 

  19. Ishibashi, W., Banerji, M. & Fabian, A. C. AGN radiative feedback in dusty quasar populations. Mon. Not. R. Astron. Soc. 469, 1496–1501 (2017).

    Article  ADS  CAS  Google Scholar 

  20. Costa, T., Rosdahl, J., Sijacki, D. & Haehnelt, M. G. Driving gas shells with radiation pressure on dust in radiation-hydrodynamic simulations. Mon. Not. R. Astron. Soc. 473, 4197–4219 (2018).

    Article  ADS  CAS  Google Scholar 

  21. Dunn, J. P., Crenshaw, D. M., Kraemer, S. B. & Trippe, M. L. Physical conditions in the ultraviolet absorbers of IRAS F22456-5125. Astrophys. J. 713, 900–905 (2010).

    Article  ADS  CAS  Google Scholar 

  22. Moe, M., Arav, N., Bautista, M. A. & Korista, K. T. Quasar outflow contribution to AGN feedback: observations of QSO SDSS J0838+2955. Astrophys. J. 706, 525–534 (2009).

    Article  ADS  CAS  Google Scholar 

  23. Fiore, F. et al. AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron. Astrophys. 601, A143 (2017).

    Article  CAS  Google Scholar 

  24. Elvis, M. A structure for quasar. Astrophys. J. 545, 63–76 (2000).

    Article  ADS  Google Scholar 

  25. Decarli, R. et al. An ALMA [C ii] survey of 27 quasars at z > 5.94. Astrophys. J. 854, 97 (2018).

    Article  ADS  CAS  Google Scholar 

  26. Eilers, A.-C. et al. Detecting and characterizing young quasars. I. Systemic redshifts and proximity zone measurements. Astrophys. J. 900, 37 (2020).

    Article  ADS  CAS  Google Scholar 

  27. Costa, T., Sijacki, D., Trenti, M. & Haehnelt, M. G. The environment of bright QSOs at z ~ 6: star-forming galaxies and X-ray emission. Mon. Not. R. Astron. Soc. 439, 2146–2174 (2014).

    Article  ADS  Google Scholar 

  28. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    Article  ADS  Google Scholar 

  29. Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    Article  ADS  Google Scholar 

  30. Bañados, E. et al. The Pan-STARRS1 Distant z > 5.6 Quasar Survey: more than 100 quasars within the first Gyr of the Universe. Astrophys. J. Suppl. Ser. 227, 11 (2016).

    Article  ADS  Google Scholar 

  31. Wang, F. et al. Exploring reionization-era quasars. III. Discovery of 16 quasars at 6.4 z 6.9 with DESI Legacy Imaging Surveys and the UKIRT Hemisphere Survey and quasar luminosity function at z 6.7. Astrophys. J. Lett. 884, 30 (2019).

    Article  ADS  CAS  Google Scholar 

  32. López, S. et al. XQ-100: a legacy survey of one hundred 3.5 z 4.5 quasars observed with VLT/X-shooter. Astron. Astrophys. 594, A91 (2016).

    Article  CAS  Google Scholar 

  33. Modigliani, A. et al. In Soc. Photo-Opt. Instr. Eng. Conf. Ser. Observatory Operations: Strategies, Processes, and Systems III Vol. 7737 (eds Silva, D. R. et al.) 773728 (SPIE, 2010).

  34. Cupani, G. et al. In Soc. Photo-Opt. Instr. Eng. Conf. Series Vol. 11452, 114521U (SPIE, 2020).

  35. Ross, N. P. & Cross, N. J. G. The near and mid-infrared photometric properties of known redshift z 5 quasars. Mon. Not. R. Astron. Soc. 494, 789–803 (2020).

    Article  ADS  CAS  Google Scholar 

  36. Jiang, L. et al. Discovery of eight z ~ 6 quasars in the Sloan Digital Sky Survey overlap regions. Astron. J. 149, 188 (2015).

    Article  ADS  Google Scholar 

  37. Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. R. Astron. Soc. 379, 1599–1617 (2007).

    Article  ADS  Google Scholar 

  38. Cross, N. J. G. et al. The VISTA Science Archive. Astron. Astrophys. 548, A119 (2012).

    Article  Google Scholar 

  39. Mazzucchelli, C. et al. Physical properties of 15 quasars at z 6.5. Astrophys. J. 849, 91 (2017).

    Article  ADS  CAS  Google Scholar 

  40. Bañados, E. et al. A metal-poor damped Lyα system at redshift 6.4. Astrophys. J. 885, 59 (2019).

    Article  ADS  CAS  Google Scholar 

  41. Edge, A. et al. The VISTA Kilo-degree Infrared Galaxy (VIKING) Survey: bridging the gap between low and high redshift. Messenger 154, 32–34 (2013).

    ADS  Google Scholar 

  42. Persson, S. E. et al. FourStar: the near-infrared imager for the 6.5 m Baade Telescope at Las Campanas Observatory. Publ. Astron. Soc. Pac. 125, 654–682 (2013).

    Article  ADS  Google Scholar 

  43. Moorwood, A., Cuby, J. G. & Lidman, C. SOFI sees first light at the NTT. Messenger 91, 9–13 (1998).

    ADS  Google Scholar 

  44. Reichard, T. A. et al. Continuum and emission-line properties of broad absorption line quasars. Astron. J. 126, 2594–2607 (2003).

    Article  ADS  CAS  Google Scholar 

  45. Knigge, C., Scaringi, S., Goad, M. R. & Cottis, C. E. The intrinsic fraction of broad-absorption line quasars. Mon. Not. R. Astron. Soc. 386, 1426–1435 (2008).

    Article  ADS  Google Scholar 

  46. Maddox, N., Hewett, P. C., Warren, S. J. & Croom, S. M. Luminous K-band selected quasars from UKIDSS. Mon. Not. R. Astron. Soc. 386, 1605–1624 (2008).

    Article  ADS  CAS  Google Scholar 

  47. Giustini, M., Cappi, M. & Vignali, C. On the absorption of X-ray bright broad absorption line quasars. Astron. Astrophys. 491, 425–434 (2008).

    Article  ADS  CAS  Google Scholar 

  48. White, R. L. et al. An I-band-selected sample of radio-emitting quasars: evidence for a large population of red quasars. Astron. J. 126, 706–722 (2003).

    Article  ADS  CAS  Google Scholar 

  49. Becker, R. H. et al. Properties of radio-selected broad absorption line quasars from the first bright quasar survey. Astrophys. J. 538, 72–82 (2000).

    Article  ADS  CAS  Google Scholar 

  50. Chehade, B. et al. Two more, bright, z > 6 quasars from VST ATLAS and WISE. Mon. Not. R. Astron. Soc. 478, 1649–1659 (2018).

    Article  ADS  CAS  Google Scholar 

  51. Reed, S. L. et al. Eight new luminous z ≥ 6 quasars discovered via SED model fitting of VISTA, WISE and Dark Energy Survey Year 1 observations. Mon. Not. R. Astron. Soc. 468, 4702–4718 (2017).

    Article  ADS  CAS  Google Scholar 

  52. Pâris, I. et al. The Sloan Digital Sky Survey Quasar Catalog: fourteenth data release. Astron. Astrophys. 613, A51 (2018).

    Article  ADS  CAS  Google Scholar 

  53. Dunn, J. P. et al. BAL outflow contribution to AGN feedback: frequency of S IV outflows in the SDSS. Astrophys. J. 750, 143 (2012).

    Article  ADS  CAS  Google Scholar 

  54. Connor, T. et al. X-ray observations of a [C II]-bright, z = 6.59 quasar/companion system. Astrophys. J. 900, 189 (2020).

    Article  ADS  CAS  Google Scholar 

  55. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  56. Vestergaard, M. & Wilkes, B. An empirical ultraviolet template for iron emission in quasars as derived from I Zwicky 1. Astrophys. J. Supp. 134, 1–33 (2001).

  57. Runnoe, J. C., Brotherton, M. S. & Shang, Z. Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 422, 478–493 (2012).

    Article  ADS  Google Scholar 

  58. Runnoe, J. C., Brotherton, M. S. & Shang, Z. Erratum: Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 427, 1800 (2012).

    Article  ADS  Google Scholar 

  59. Vestergaard, M. & Osmer, P. S. Mass functions of the active black holes in distant quasars from the large bright quasar survey, the bright quasar survey, and the color-selected sample of the SDSS fall equatorial stripe. Astrophys. J. 699, 800–816 (2009).

    Article  ADS  CAS  Google Scholar 

  60. Vestergaard, M. & Peterson, B. M. Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689–709 (2006).

    Article  ADS  CAS  Google Scholar 

  61. Coatman, L. et al. Correcting C IV-based virial black hole masses. Mon. Not. R. Astron. Soc. 465, 2120–2142 (2017).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO large programme 1104.A-0026(A) and ESO programme 0102.A-0233(A). Funding for SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS website is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, the Astrophysical Institute Potsdam, the University of Basel, the University of Cambridge, Case Western Reserve University, the University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy, the Max-Planck-Institute for Astrophysics, New Mexico State University, Ohio State University, the University of Pittsburgh, the University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. M.B., C.F., F.F. and E.P. acknowledge support from the PRIN MIUR project ‘Black hole winds and the baryon life cycle of galaxies: the stone-guest at the galaxy evolution supper’, contract number 2017PH3WAT. R.D. is supported by a Gruber Foundation Fellowship grant. G.B. was supported by NSF grant AST-1751404. S.E.I.B. and R.A.M. acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 740246 ‘Cosmic gas’. R.M. acknowledges support by the Science and Technology Facilities Council and European Research Council Advanced Grant 695671 ‘QUENCH’. R.M. also acknowledges funding from a research professorship from the Royal Society. A.C.E. acknowledges support by NASA through the NASA Hubble Fellowship grant number HF2-51434 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. This research was conducted by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. This paper includes data gathered with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile.

Author information

Authors and Affiliations

Authors

Contributions

M.B. led the analysis and writing presented in this paper. V.D’O. is the principal investigator of the ESO/Very Large Telescope X-shooter large programme that led to our findings and contributed to the data analysis. V.D’O., C.F. and F.F. had a central role in project design and implementation. N.A. provided expertise in the topic of BAL identification and analysis methodology. E.B. provided new photometric points based on ESO observations. G.B. and G.C. carried out the reduction of the spectra. All authors are part of the XQR-30 collaboration and have reviewed, discussed and commented on the manuscript.

Corresponding author

Correspondence to M. Bischetti.

Peer review

Peer review information

Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Extended data

is available for this paper at https://doi.org/10.1038/s41586-022-04608-1.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Normalized spectra of BAL quasars in the XQR-30 sample, smoothed to 500 km/s.

The velocity axis in each panel is relative to the rest-frame wavelength of C IV. Vertical solid, dashed, and dotted lines indicate the position of C IV, Si IV and N V, respectively. The horizontal solid (dashed) line represents a flux level of 1.0(0.9). C IV BALs, corresponding to a flux level of less than 0.9 (equation 1), are highlighted as green shaded areas. We note that the C IV optical depth typically dominates that of Si IV in BAL quasars. This implies that, for example, the BAL feature at v~45000 km/s in PSOJ009-10 cannot be ascribed to a low velocity Si IV BAL because no low velocity C IV BAL with similar velocity is observed in the X-shooter spectrum. The shaded magenta areas indicate the overlapping spectral region between the X-shooter Vis and NIR arms, while orange areas indicate the spectral region affected by substantial intergalactic medium absorption.

Extended Data Fig. 2 Normalized spectra of BAL quasars in the XQR-30 sample, smoothed to 500 km/s.

Same as Extended Data Figure 1.

Extended Data Table 1 The XQR-30 sample properties and BAL system parameters

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bischetti, M., Feruglio, C., D’Odorico, V. et al. Suppression of black-hole growth by strong outflows at redshifts 5.8–6.6. Nature 605, 244–247 (2022). https://doi.org/10.1038/s41586-022-04608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04608-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing