Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cobalt-electrocatalytic HAT for functionalization of unsaturated C–C bonds


The study and application of transition metal hydrides (TMHs) has been an active area of chemical research since the early 1960s1, for energy storage, through the reduction of protons to generate hydrogen2,3, and for organic synthesis, for the functionalization of unsaturated C–C, C–O and C–N bonds4,5. In the former instance, electrochemical means for driving such reactivity has been common place since the 1950s6 but the use of stoichiometric exogenous organic- and metal-based reductants to harness the power of TMHs in synthetic chemistry remains the norm. In particular, cobalt-based TMHs have found widespread use for the derivatization of olefins and alkynes in complex molecule construction, often by a net hydrogen atom transfer (HAT)7. Here we show how an electrocatalytic approach inspired by decades of energy storage research can be made use of in the context of modern organic synthesis. This strategy not only offers benefits in terms of sustainability and efficiency but also enables enhanced chemoselectivity and distinct, tunable reactivity. Ten different reaction manifolds across dozens of substrates are exemplified, along with detailed mechanistic insights into this scalable electrochemical entry into Co–H generation that takes place through a low-valent intermediate.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Energy-storage-inspired electrochemical HAT by cobalt catalysis.
Fig. 2: Scope of e-HAT isomerization.
Fig. 3: Scope of e-HAT reduction.
Fig. 4: Selectivity, scalability and HAT reactions of e-HAT.
Fig. 5: Mechanistic study.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. Norton, J. R. & Sowa, J. Introduction: metal hydrides. Chem. Rev. 116, 8315–8317 (2016).

    PubMed  Article  CAS  Google Scholar 

  2. Luo, G. G. et al. Recent progress in ligand-centered homogeneous electrocatalysts for hydrogen evolution reaction. Inorg. Chem. Front. 6, 343–354 (2019).

    CAS  Article  Google Scholar 

  3. Margarit, C. G., Asimow, N. G., Thorarinsdottir, A. E., Costentin, C. & Nocera, D. G. Impactful role of cocatalysts on molecular electrocatalytic hydrogen production. ACS Catal. 11, 4561–4567 (2021).

    CAS  Article  Google Scholar 

  4. Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Armstrong, K. C. & Waymouth, R. M. Electroreduction of benzaldehyde with a metal–ligand bifunctional hydroxycyclopentadienyl molybdenum (II) hydride. Organometallics 39, 4415–4419 (2020).

    CAS  Article  Google Scholar 

  6. Vesborg, P. C., Seger, B. & Chorkendorff, I. B. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. 6, 951–957 (2015).

    CAS  Google Scholar 

  7. Crossley, S. W., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Wiedner, E. S. et al. Thermodynamic hydricity of transition metal hydrides. Chem. Rev. 116, 8655–8692 (2016).

    CAS  PubMed  Article  Google Scholar 

  9. Hu, Y., Shaw, A. P., Estes, D. P. & Norton, J. R. Transition-metal hydride radical cations. Chem. Rev. 116, 8427–8462 (2016).

    CAS  PubMed  Article  Google Scholar 

  10. Eisenberg, D. C. & Norton, J. R. Hydrogen‐atom transfer reactions of transition‐metal hydrides. Isr. J. Chem 31, 55–66 (1991).

    CAS  Article  Google Scholar 

  11. Puls, F., Linke, P., Kataeva, O. & Knölker, H. J. Iron‐catalyzed wacker‐type oxidation of olefins at room temperature with 1, 3‐diketones or neocuproine as ligands. Angew. Chem, Int. Ed. 60, 14083–14090 (2021).

    CAS  Article  Google Scholar 

  12. Isayama, S. & Mukaiyama, T. A new method for preparation of alcohols from olefins with molecular oxygen and phenylsilane by the use of bis (acetylacetonato) cobalt (II). Chem. Lett. 18, 1071–1074 (1989).

    Article  Google Scholar 

  13. Gui, J. et al. Practical olefin hydroamination with nitroarenes. Science 348, 886–891 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  14. Lo, J. C., Gui, J., Yabe, Y., Pan, C. M. & Baran, P. S. Functionalized olefin cross-coupling to construct carbon–carbon bonds. Nature 516, 343–348 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Gaspar, B. & Carreira, E. M. Mild cobalt‐catalyzed hydrocyanation of olefins with tosyl cyanide. Angew. Chem. In. Ed. 46, 4519–4522 (2007).

    CAS  Article  Google Scholar 

  16. Shigehisa, H., Aoki, T., Yamaguchi, S., Shimizu, N. & Hiroya, K. Hydroalkoxylation of unactivated olefins with carbon radicals and carbocation species as key intermediates. J. Am. Chem. Soc. 135, 10306–10309 (2013).

    CAS  PubMed  Article  Google Scholar 

  17. Leggans, E. K., Barker, T. J., Duncan, K. K. & Boger, D. L. Iron (III)/NaBH4-mediated additions to unactivated alkenes: synthesis of novel 20′-vinblastine analogues. Org. Lett. 14, 1428–1431 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Song, L. et al. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Wells, A. S. On the perils of unexpected silane generation. Org. Process Res. Dev. 14, 484–484 (2010).

    CAS  Article  Google Scholar 

  20. Yu, K., Yao, F., Zeng, Q., Xie, H. & Ding, H. Asymmetric total syntheses of (+)-davisinol and (+)-18-benzoyldavisinol: A HAT-initiated transannular redox radical approach. J Am. Chem. Soc. 143, 10576–10581 (2021).

    CAS  PubMed  Article  Google Scholar 

  21. Godfrey, N. A., Schatz, D. J. & Pronin, S. V. Twelve-step asymmetric synthesis of (−)-nodulisporic acid C. J. Am. Chem. Soc. 140, 12770–12774 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Kellett, R. M. & Spiro, T. G. Cobalt (I) porphyrin catalysts of hydrogen production from water. Inorg. Chem. 24, 2373–2377 (1985).

    CAS  Article  Google Scholar 

  23. Zhang, W., Cui, L. & Liu, J. Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. J. Alloy. Compd 821, 153542 (2020).

    CAS  Article  Google Scholar 

  24. Wiedner, E. S. & Bullock, R. M. Electrochemical detection of transient cobalt hydride intermediates of electrocatalytic hydrogen production. J. Am. Chem. Soc. 138, 8309–8318 (2016).

    CAS  PubMed  Article  Google Scholar 

  25. Marinescu, S. C., Winkler, J. R. & Gray, H. B. Molecular mechanisms of cobalt-catalyzed hydrogen evolution. Proc. Natl Acad. Sci. USA 109, 15127–15131 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Beyene, B. B., Mane, S. B. & Hung, C. H. Electrochemical hydrogen evolution by cobalt (II) porphyrins: effects of ligand modification on catalytic activity, efficiency and overpotential. J. Electrochem. Soc. 165, 481 (2018).

    Article  CAS  Google Scholar 

  27. Queyriaux, N., Jane, R. T., Massin, J., Artero, V. & Chavarot-Kerlidou, M. Recent developments in hydrogen evolving molecular cobalt (II)–polypyridyl catalysts. Coordin. Chem. Rev. 304, 3–19 (2015).

    Article  CAS  Google Scholar 

  28. Kapat, A., Sperger, T., Guven, S. & Schoenebeck, F. E-Olefins through intramolecular radical relocation. Science 363, 391–396 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  29. Crossley, S. W., Barabé, F. & Shenvi, R. A. Simple, chemoselective, catalytic olefin isomerization. J. Am. Chem. Soc. 136, 16788–16791 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Li, G. et al. Radical isomerization and cycloisomerization initiated by H• transfer. J. Am. Chem. Soc. 138, 7698–7704 (2016).

    CAS  PubMed  Article  Google Scholar 

  31. Kingston, C. et al. A survival guide for the “electro-curious”. Acc. Chem. Res. 53, 72–83 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Gao, Y. et al. Electrochemical Nozaki–Hiyama–Kishi coupling: scope, applications, and mechanism. J. Am. Chem. Soc. 143, 9478–9488 (2021).

    CAS  PubMed  Article  Google Scholar 

  33. Gnaim, S. et al. Electrochemically driven desaturation of carbonyl compounds. Nat. Chem. 13, 367–372 (2021).

    CAS  PubMed  Article  Google Scholar 

  34. Lo, J. C. et al. Fe-catalyzed C–C bond construction from olefins via radicals. J. Am. Chem. Soc. 139, 2484–2503 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Felpin, F. X. & Fouquet, E. A useful, reliable and safer protocol for hydrogenation and the hydrogenolysis of O‐benzyl groups: the in situ preparation of an active Pd0/C catalyst with well‐defined properties. Chem. Eur. J. 16, 12440–12445 (2010).

    CAS  PubMed  Article  Google Scholar 

  36. Friedfeld, M. R., Margulieux, G. W., Schaefer, B. A. & Chirik, P. J. Bis (phosphine) cobalt dialkyl complexes for directed catalytic alkene hydrogenation. J. Am. Chem. Soc. 136, 13178–13181 (2014).

    CAS  PubMed  Article  Google Scholar 

  37. Liu, X. et al. Cobalt-catalyzed regioselective olefin isomerization under kinetic control. J. Am. Chem. Soc. 140, 6873–6882 (2018).

    CAS  PubMed  Article  Google Scholar 

  38. Kamei, Y. et al. Silane-and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysis. Nat. Commun. 12, 966 (2021).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Van der Puyl, V., McCourt, R. O. & Shenvi, R. A. Cobalt-catalyzed alkene hydrogenation by reductive turnover. Tetrahedron Lett. 72, 153047 (2021).

    Article  CAS  Google Scholar 

  40. Raya, B., Biswas, S. & RajanBabu, T. V. Selective cobalt-catalyzed reduction of terminal alkenes and alkynes using (EtO)2Si(Me)H as a stoichiometric reductant. ACS Catal. 6, 6318–6323 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Yin, Y. N., Ding, R. Q., Ouyang, D. C., Zhang, Q. & Zhu, R. Highly chemoselective synthesis of hindered amides via cobalt-catalyzed intermolecular oxidative hydroamidation. Nat. Commun. 12, 2552 (2021).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Benkeser, R. A., Schroll, G. & Sauve, D. M. Reduction of organic compounds by lithium in low molecular weight amines. II. Stereochemistry. Chemical reduction of an isolated non-terminal double bond. J. Am. Chem. Soc. 77, 3378–3379 (1955).

    CAS  Article  Google Scholar 

  43. Fürstner, A. trans-hydrogenation, gem-hydrogenation, and trans-hydrometalation of alkynes: an interim report on an unorthodox reactivity paradigm. J. Am. Chem. Soc. 141, 11–24 (2018).

    PubMed  Article  CAS  Google Scholar 

  44. Walaijai, K., Cavill, S. A., Whitwood, A. C., Douthwaite, R. E. & Perutz, R. N. Electrocatalytic proton reduction by a cobalt (III) hydride complex with phosphinopyridine PN ligands. Inorg. Chem. 59, 18055–18067 (2020).

    CAS  PubMed  Article  Google Scholar 

  45. Hickey, D. P. et al. Investigating the role of ligand electronics on stabilizing electrocatalytically relevant low-valent Co (I) intermediates. J. Am. Chem. Soc. 141, 1382–1392 (2019).

    CAS  PubMed  Article  Google Scholar 

  46. Qi, X. J., Li, Z., Fu, Y., Guo, Q. X. & Liu, L. Anti-spin-delocalization effect in Co−C bond dissociation enthalpies. Organometallics 27, 2688–2698 (2008).

    CAS  Article  Google Scholar 

  47. Yang, Y. et al. Operando methods in electrocatalysis. ACS Catal. 11, 1136–1178 (2021).

    CAS  Article  Google Scholar 

Download references


This work was supported by the NSF Center for Synthetic Organic Electrochemistry (grant no. CHE-2002158). S.G. thanks the Council for Higher Education, Fulbright Israel and Yad Hanadiv for their generous fellowships. A.B. thanks the Austrian Science Fund (FWF) for an Erwin Schrödinger Fellowship (J 4452-N). H.-J.Z. thanks the Shanghai Institute of Organic Chemistry (SIOC) fellowship. C.A.M. thanks the National Institute of General Medical Sciences of the National Institutes of Health (grant no. K99GM140249). We are grateful to D.-H. Huang and L. Pasternack (Scripps Research) for assistance with the NMR spectroscopy, to J. Chen, B. Sanchez and E. Sturgell (Scripps Automated Synthesis Facility) for assistance with high-performance liquid chromatography, high-resolution mass spectroscopy and liquid chromatography–mass spectrometry. We thank S. Harwood, Y. Kawamata, K. X. Rodriguez and C. Bi for helpful advice and suggestions. We also thank Q. Liu and X. Liu (Tsinghua University) for helpful discussions.

Author information

Authors and Affiliations



S.G., A.B. and P.S.B. developed the concept. S.G., A.B., H.-J.Z. and P.S.B. were responsible for the optimization and scope. L.C., M.Q., S.G. and P.-G.E. performed the flow setup and scale up. C.G., C.A.M., W.D.B., S.G., H.D.A. and S.D.M. carried out the CV studies and analysis. D.V., T.T. and M.S.S. carried out the DFT calculations and analysis. D.E.H., E.K. and S.E.R. carried out the UV–vis studies. R.A.D., W.H. and D.G.B. carried out the kinetic studies. R.Z. and H.D.A. performed the DEMS analysis. S.G., A.B., H.-J.Z., J.C.V., D.G.B., H.D.A., S.E.R., M.S.S. and P.S.B. prepared the manuscript.

Corresponding authors

Correspondence to Hector D. Abruna, Donna G. Blackmond, Shelley D. Minteer, Sarah E. Reisman, Matthew S. Sigman or Phil S. Baran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, data and figures including details regarding the methods and procedures, and NMR spectra data. See Contents page for details.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gnaim, S., Bauer, A., Zhang, HJ. et al. Cobalt-electrocatalytic HAT for functionalization of unsaturated C–C bonds. Nature 605, 687–695 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing