Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Realizing repeated quantum error correction in a distance-three surface code


Quantum computers hold the promise of solving computational problems that are intractable using conventional methods1. For fault-tolerant operation, quantum computers must correct errors occurring owing to unavoidable decoherence and limited control accuracy2. Here we demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors3,4,5,6. Using 17 physical qubits in a superconducting circuit, we encode quantum information in a distance-three logical qubit, building on recent distance-two error-detection experiments7,8,9. In an error-correction cycle taking only 1.1 μs, we demonstrate the preservation of four cardinal states of the logical qubit. Repeatedly executing the cycle, we measure and decode both bit-flip and phase-flip error syndromes using a minimum-weight perfect-matching algorithm in an error-model-free approach and apply corrections in post-processing. We find a low logical error probability of 3% per cycle when rejecting experimental runs in which leakage is detected. The measured characteristics of our device agree well with a numerical model. Our demonstration of repeated, fast and high-performance quantum error-correction cycles, together with recent advances in ion traps10, support our understanding that fault-tolerant quantum computation will be practically realizable.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device concept, architecture and performance.
Fig. 2: Stabilizer circuits and their characterization.
Fig. 3: The surface-code cycle, fidelity of logical-state initialization and average error syndromes.
Fig. 4: Logical-state preservation and error per cycle.

Data availability

All data are available from the corresponding author on reasonable request.


  1. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article  Google Scholar 

  2. Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th Conference on Foundations of Computer Science 56 pp (IEEE, 1996).

  3. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  4. Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Bombin, H. & Martin-Delgado, M. A. Quantum measurements and gates by code deformation. J. Phys. A Math. Theor. 42, 095302 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Andersen, C. K. et al. Repeated quantum error detection in a surface code. Nat. Phys. 16, 875–880 (2020).

    Article  CAS  Google Scholar 

  8. Marques, J. F. et al. Logical-qubit operations in an error-detecting surface code. Nat. Phys. 18, 80–86 (2022).

    Article  CAS  Google Scholar 

  9. Chen, Z. et al. Exponential suppression of bit or phase errors with cyclic error correction. Nature 595, 383–387 (2021).

    Article  CAS  Google Scholar 

  10. Ryan-Anderson, C. et al. Realization of real-time fault-tolerant quantum error correction. Phys. Rev. X 11, 041058 (2021).

    CAS  Google Scholar 

  11. Bravyi, S. B. & Kitaev, A. Y. Quantum codes on a lattice with boundary. Preprint at (1998).

  12. Wang, C., Harrington, J. & Preskill, J. Confinement-Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory. Ann. Phys. 303, 31–58 (2003).

    Article  ADS  CAS  MATH  Google Scholar 

  13. Gottesman, D. Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997).

  14. Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  15. Moussa, O., Baugh, J., Ryan, C. A. & Laflamme, R. Demonstration of sufficient control for two rounds of quantum error correction in a solid state ensemble quantum information processor. Phys. Rev. Lett. 107, 160501 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  16. Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Knill, E., Laflamme, R., Martinez, R. & Negrevergne, C. Benchmarking quantum computers: the five-qubit error correcting code. Phys. Rev. Lett. 86, 5811 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Abobeih, M. H. et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Preprint at (2021).

  21. Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281–286 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Hilder, J. et al. Fault-tolerant parity readout on a shuttling-based trapped-ion quantum computer. Phys. Rev. X 12, 011032 (2022).

    CAS  Google Scholar 

  23. Horsman, C., Fowler, A. G., Devitt, S. & Meter, R. V. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Hu, L. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 15, 503–508 (2019).

    Article  CAS  Google Scholar 

  26. Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    Article  ADS  PubMed  CAS  Google Scholar 

  27. Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Bombin, H. & Martin-Delgado, M. A. Optimal resources for topological two-dimensional stabilizer codes: comparative study. Phys. Rev. A 76, 012305 (2007).

    Article  ADS  CAS  Google Scholar 

  29. Tomita, Y. & Svore, K. M. Low-distance surface codes under realistic quantum noise. Phys. Rev. A 90, 062320 (2014).

    Article  ADS  CAS  Google Scholar 

  30. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article  ADS  CAS  Google Scholar 

  31. Strauch, F. W. et al. Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett. 91, 167005 (2003).

    Article  ADS  PubMed  CAS  Google Scholar 

  32. DiCarlo, L. et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Negirneac, V. et al. High-fidelity controlled-Z gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor. Phys. Rev. Lett. 126, 220502 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Krinner, S. et al. Benchmarking coherent errors in controlled-phase gates due to spectator qubits. Phys. Rev. Appl. 14, 024042 (2020).

    Article  ADS  CAS  Google Scholar 

  35. Negnevitsky, V. et al. Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register. Nature 563, 527–531 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Andersen, C. K. et al. Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits. npj Quantum Inf. 5, 69 (2019).

    Article  ADS  Google Scholar 

  37. Bultink, C. C. et al. Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements. Sci. Adv. 6, eaay3050 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aliferis, P. & Terhal, B. M. Fault-tolerant quantum computation for local leakage faults. Quantum Inf. Comput. 7, 139–156 (2007).

    MathSciNet  MATH  Google Scholar 

  39. Fowler, A. G. Coping with qubit leakage in topological codes. Phys. Rev. A 88, 042308 (2013).

    Article  ADS  CAS  Google Scholar 

  40. Ghosh, J. & Fowler, A. G. Leakage-resilient approach to fault-tolerant quantum computing with superconducting elements. Phys. Rev. A 91, 020302 (2015).

    Article  ADS  CAS  Google Scholar 

  41. Suchara, M., Cross, A. W. & Gambetta, J. M. Leakage suppression in the toric code. Quantum Inf. Comput. 15, 997–1016 (2015).

    MathSciNet  Google Scholar 

  42. Varbanov, B. M. et al. Leakage detection for a transmon-based surface code. npj Quantum Inf. 6, 102 (2020).

    Article  ADS  Google Scholar 

  43. Versluis, R. et al. Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8, 034021 (2017).

    Article  ADS  Google Scholar 

  44. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article  ADS  CAS  Google Scholar 

  45. von Burg, V. et al. Quantum computing enhanced computational catalysis. Phys. Rev. Res. 3, 033055 (2021).

    Article  Google Scholar 

  46. Babbush, R. et al. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2, 010103 (2021).

    Article  Google Scholar 

  47. Nigg, D. et al. Quantum computations on a topologically encoded qubit. Science 345, 302–305 (2014).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  48. Trout, C. J. et al. Simulating the performance of a distance-3 surface code in a linear ion trap. New J. Phys. 20, 043038 (2018).

    Article  ADS  CAS  Google Scholar 

  49. Landahl, A. J. & Ryan-Anderson, C. Quantum computing by color-code lattice surgery. Preprint at (2014).

  50. Gutiérrez, M., Müller, M. & Bermúdez, A. Transversality and lattice surgery: exploring realistic routes toward coupled logical qubits with trapped-ion quantum processors. Phys. Rev. A 99, 022330 (2019).

    Article  ADS  Google Scholar 

  51. Stephens, A. M. Fault-tolerant thresholds for quantum error correction with the surface code. Phys. Rev. A 89, 022321 (2014).

    Article  ADS  CAS  Google Scholar 

  52. McEwen, M. et al. Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun. 12, 1761 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Strand, J. D. et al. First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505 (2013).

    Article  ADS  CAS  Google Scholar 

  54. Hutchings, M. D. et al. Tunable superconducting qubits with flux-independent coherence. Phys. Rev. Appl. 8, 044003 (2017).

    Article  ADS  Google Scholar 

  55. Walter, T. et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).

    Article  ADS  Google Scholar 

  56. Heinsoo, J. et al. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018).

    Article  ADS  CAS  Google Scholar 

  57. Sank, D. et al. Measurement-induced state transitions in a superconducting qubit: beyond the rotating wave approximation. Phys. Rev. Lett. 117, 190503 (2016).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  58. Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. O’Brien, T. E., Tarasinski, B. & DiCarlo, L. Density-matrix simulation of small surface codes under current and projected experimental noise. npj Quantum Inf. 3, 39 (2017).

    Article  ADS  Google Scholar 

  60. Edmonds, J. Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  61. Spitz, S. T., Tarasinski, B., Beenakker, C. W. J. & O’Brien, T. E. Adaptive weight estimator for quantum error correction in a time-dependent environment. Adv. Quantum Technol. 1, 1800012 (2018).

    Article  Google Scholar 

Download references


We are grateful for valuable discussions with Q. Ficheux and C. Lledó. We acknowledge the contributions of R. Boell to the experimental setup and M. Kerschbaum for early work on the two-qubit gate implementation. The team in Zurich acknowledges financial support by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the U.S. Army Research Office grant W911NF-16-1-0071, by the EU Flagship on Quantum Technology H2020-FETFLAG-2018-03 project 820363 OpenSuperQ, by the National Center of Competence in Research ‘Quantum Science and Technology’ (NCCR QSIT), a research instrument of the Swiss National Science Foundation (SNSF, grant number 51NF40-185902), by the SNSF R’Equip grant 206021-170731, by the EU programme H2020-FETOPEN project 828826 Quromorphic and by ETH Zurich. S.K. acknowledges financial support from Fondation Jean-Jacques et Félicia Lopez-Loreta and the ETH Zurich Foundation. The work in Sherbrooke was undertaken thanks in part to funding from NSERC, Canada First Research Excellence Fund, ARO grant W911NF-18-1-0411, the Ministère de l’Économie et de l’Innovation du Québec and U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator. M.M. acknowledges support by the U.S. Army Research Office grant W911NF-16-1-0070. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA or the U.S. Government.

Author information

Authors and Affiliations



S.K., N.L. and A.R. planned the experiments, S.K. and N.L. performed the main experiment and S.K. and N.L. analysed the data. F.S., A.R. and C.K.A. designed the device and S.K., A.R. and G.J.N. fabricated the device. N.L., C.H. and S.L. developed the experimental software framework and A.R., C.H., N.L., S.K. and S.L. developed the control and calibration software routines. A.R., J.H., S.K. and C.H. designed and built elements of the room-temperature setup and S.K., A.R., C.H., S.L., N.L. and F.S. maintained the experimental setup. S.K., N.L., A.R., C.H., S.L. and C.K.A. characterized and calibrated the device and the experimental setup. E.G., A.D.P. and C.L. performed the numerical simulations. M.M. provided guidance on logical qubit evaluation methodology aspects. S.K., N.L., A.R., C.H. and S.L. prepared the figures for the manuscript and S.K., N.L., A.R., C.E. and A.W. wrote the manuscript, with inputs from all co-authors. A.B., C.E. and A.W. supervised the work.

Corresponding author

Correspondence to Sebastian Krinner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Kyungjoo Noh and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains sections I–XIII, including Supplementary Figs. 1–14, Supplementary Tables 1–3 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krinner, S., Lacroix, N., Remm, A. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing