Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Charge-density-wave-driven electronic nematicity in a kagome superconductor

Abstract

Electronic nematicity, in which rotational symmetry is spontaneously broken by electronic degrees of freedom, has been demonstrated as a ubiquitous phenomenon in correlated quantum fluids including high-temperature superconductors and quantum Hall systems1,2. Notably, the electronic nematicity in high-temperature superconductors exhibits an intriguing entanglement with superconductivity, generating complicated superconducting pairing and intertwined electronic orders. Recently, an unusual competition between superconductivity and a charge-density-wave (CDW) order has been found in the AV3Sb5 (A = K, Rb, Cs) family with two-dimensional vanadium kagome nets3,4,5,6,7,8. Whether these phenomena involve electronic nematicity is still unknown. Here we report evidence for the existence of electronic nematicity in CsV3Sb5, using a combination of elastoresistance measurements, nuclear magnetic resonance (NMR) and scanning tunnelling microscopy/spectroscopy (STM/S). The temperature-dependent elastoresistance coefficient (m11 minus m12) and NMR spectra demonstrate that, besides a C2 structural distortion of the 2a0 × 2a0 supercell owing to out-of-plane modulation, considerable nematic fluctuations emerge immediately below the CDW transition (approximately 94 kelvin) and finally a nematic transition occurs below about 35 kelvin. The STM experiment directly visualizes the C2-structure-pinned long-range nematic order below the nematic transition temperature, suggesting a novel nematicity described by a three-state Potts model. Our findings indicate an intrinsic electronic nematicity in the normal state of CsV3Sb5, which sets a new paradigm for revealing the role of electronic nematicity on pairing mechanism in unconventional superconductors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Visualizing the intra-unit-cell rotational symmetry breaking of the 2a0 × 2a0 CDW state.
Fig. 2: 51V NMR evidence for C6 rotational symmetry breaking and electronic nematicity.
Fig. 3: Evidence for CDW-driven electronic nematicity from elastoresistance measurement.

Code availability

The code used for STM data analysis is available from the corresponding author upon reasonable request.

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Fradkin, E., Kivelson, S., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

    ADS  CAS  Google Scholar 

  2. Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum materials: nematicity and beyond. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).

    ADS  Google Scholar 

  3. Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    CAS  Google Scholar 

  4. Ortiz, B. R. et al. CsV3Sb5: a 2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    ADS  CAS  PubMed  Google Scholar 

  5. Chen, K. Y. et al. Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5 under high pressure. Phys. Rev. Lett. 126, 247001 (2021).

    ADS  CAS  PubMed  Google Scholar 

  6. Yu, F. H. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 3645 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao, H. et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).

    ADS  CAS  PubMed  Google Scholar 

  8. Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).

    ADS  CAS  PubMed  Google Scholar 

  9. Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008).

    ADS  PubMed  Google Scholar 

  10. Ko, W.-H., Lee, P. A. & Wen, X.-G. Doped kagome system as exotic superconductor. Phys. Rev. B 79, 214502 (2009).

    ADS  Google Scholar 

  11. Guo, H.-M. & Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 80, 113102 (2009).

    ADS  Google Scholar 

  12. Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 8, 158–163 (2012).

    CAS  Google Scholar 

  13. Yu, S.-L. & Li, J.-X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012).

    ADS  Google Scholar 

  14. Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).

    ADS  PubMed  Google Scholar 

  15. Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87, 115135 (2013).

    ADS  Google Scholar 

  16. Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. https://doi.org/10.1038/s41567-021-01451-5 (2022).

    Article  Google Scholar 

  17. Hu, Y. et al. Rich nature of Van Hove singularities in kagome superconductor CsV3Sb5. Preprint at https://arxiv.org/abs/2106.05922 (2021).

  18. Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    ADS  CAS  PubMed  Google Scholar 

  19. Liang, Z. et al. Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021).

    CAS  Google Scholar 

  20. Li, H. et al. Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors AV3Sb5 (A = Rb, Cs). Phys. Rev. X 11, 031050 (2021).

    CAS  Google Scholar 

  21. Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).

    ADS  CAS  PubMed  Google Scholar 

  22. Song, D. et al. Orbital ordering and fluctuations in a kagome superconductor CsV3Sb5. Sci. China-Phys. Mech. Astron. 65, 247462 (2022).

  23. Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the kagome superconductor AV3Sb5. Sci. Bull. 66, 1384–1388 (2021).

    CAS  Google Scholar 

  24. Mielke, C. III et al. Time-reversal symmetry-breaking charge order in a correlated kagome superconductor. Nature 602, 245–250 (2022).

    ADS  PubMed  Google Scholar 

  25. Yu, L. et al. Evidence of a hidden flux phase in the topological kagome metal CsV3Sb5. Preprint at https://arxiv.org/abs/2107.10714 (2021).

  26. Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu, F. H. et al. Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B 104, L041103 (2021).

    ADS  CAS  Google Scholar 

  28. Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. https://doi.org/10.1038/s41567-021-01479-7 (2022).

    Article  Google Scholar 

  29. Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park, T., Ye, M. & Balents, L. Electronic instabilities of kagome metals: saddle points and Landau theory. Phys. Rev. B 104, 035142 (2021).

    ADS  CAS  Google Scholar 

  31. Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Theory of the charge density wave in AV3Sb5 kagome metals. Phys. Rev. B 104, 214513 (2021).

    ADS  CAS  Google Scholar 

  32. Ortiz, B. R. et al. Fermi surface mapping and the nature of charge-density-wave order in the kagome superconductor CsV3Sb5. Phys. Rev. X 11, 041030 (2021).

    CAS  Google Scholar 

  33. Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    ADS  CAS  PubMed  Google Scholar 

  34. Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  35. Hinkov, V. et al. Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6.45. Science 319, 597–600 (2008).

    CAS  PubMed  Google Scholar 

  36. Daou, R. et al. Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor. Nature 463, 519–522 (2010).

    ADS  CAS  PubMed  Google Scholar 

  37. Sato, Y. et al. Thermodynamic evidence for a nematic phase transition at the onset of the pseudogap in YBa2Cu3Oy. Nat. Phys. 13, 1074–1078 (2017).

    CAS  Google Scholar 

  38. Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).

    CAS  Google Scholar 

  39. Fernandes, R. M. & Venderbos, J. W. F. Nematicity with a twist: rotational symmetry breaking in a moiré superlattice. Sci. Adv. 6, eaba8834 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, C. C. et al. Nodal superconductivity and superconducting domes in the topological kagome metal CsV3Sb5. Preprint at https://arxiv.org/abs/2102.08356 (2021).

  41. Xu, H.-S. et al. Multiband superconductivity with sign-preserving order parameter in kagome superconductor CsV3Sb5. Phys. Rev. Lett. 127, 187004 (2021).

    ADS  CAS  PubMed  Google Scholar 

  42. Mu, C. et al. S-wave superconductivity in kagome metal CsV3Sb5 revealed by 121/123Sb NQR and 51V NMR measurements. Chin. Phys. Lett. 38, 077402 (2021).

    ADS  CAS  Google Scholar 

  43. Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021).

    ADS  CAS  Google Scholar 

  44. Fernandes, R. M. & Millis, A. J. Nematicity as a probe of superconducting pairing in iron-based superconductors. Phys. Rev. Lett. 111, 127001 (2013).

    ADS  PubMed  Google Scholar 

  45. Tao, W. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature 477, 191–194 (2011).

    Google Scholar 

  46. Berthier, C., Jérome, D. & Molinie, P. NMR study on a 2H-NbSe2 single crystal: a microscopic investigation of the charge density waves state. J. Phys. C 11, 797–814 (1978).

    ADS  CAS  Google Scholar 

  47. Hosoi, S. et al. Nematic quantum critical point without magnetism in FeSe1−xSx superconductors. Proc. Natl. Acad. Sci. USA 113, 8139–8143 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ishida, K. et al. Divergent nematic susceptibility near the pseudogap critical point in a cuprate superconductor. J. Phys. Soc. Jpn. 89, 064707 (2020).

    ADS  Google Scholar 

  49. Eckberg, C. et al. Sixfold enhancement of superconductivity in a tunable electronic nematic system. Nat. Phys. 16, 346–350 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shapiro, M. C., Hlobil, P., Hristov, A. T., Maharaj, A. V. & Fisher, I. R. Symmetry constraints on the elastoresistivity tensor. Phys. Rev. B 92, 235147 (2015).

    ADS  Google Scholar 

  51. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).

    ADS  CAS  PubMed  Google Scholar 

  52. Li, H. et al. Spatial symmetry constraint of charge-ordered kagome superconductor CsV3Sb5. Preprint at https://arxiv.org/abs/2109.03418 (2021).

Download references

Acknowledgements

We thank K. Jiang, J. He, L. Jiao, X. Liu and V. Madhavan for discussions. We thank J. Jiang for assistance with Laue diffraction measurement. This work is supported by the National Key R&D Program of the MOST of China (grant no. 2017YFA0303000), the National Natural Science Foundation of China (grant nos 11888101, 12034004, 12074364), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB25000000), the Anhui Initiative in Quantum Information Technologies (grant no. AHY160000), the Collaborative Innovation Program of Hefei Science Center, CAS (grant no. 2019HSC-CIP007).

Author information

Authors and Affiliations

Authors

Contributions

T.W., Z. Wang and X.C. conceived the experiments. W.M., P.W., Z.L. and Z. Wang performed STM experiments. L.N., D.S., L.Z., J.L., M.S., D.Z., S.L., B.K., Z. Wu, Y.Z., K.L. and T.W. performed NMR measurements. K.S., L.N. and T.W. performed elastoresistance measurements. F.Y. and J.Y. grew the single crystals. L.N., K.S., Z.X., Z. Wang, T.W. and X.C. interpreted the results and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Zhenyu Wang, Tao Wu or Xianhui Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Turan Birol and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–16, including 18 Supplementary Figures, Supplementary Tables 1–2 and Supplementary References; see contents page for details.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nie, L., Sun, K., Ma, W. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022). https://doi.org/10.1038/s41586-022-04493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04493-8

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing