Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

X-ray astronomy comes of age

This article has been updated

Abstract

The Chandra X-ray Observatory (Chandra) and the X-ray Multi-Mirror Mission (XMM-Newton) continue to expand the frontiers of knowledge about high-energy processes in the Universe. These groundbreaking observatories lead an X-ray astronomy revolution: revealing the physical processes and extreme conditions involved in producing cosmic X-rays in objects ranging in size from a few kilometres (comets) to millions of light years (clusters of galaxies), and particle densities ranging over 20 orders of magnitude. In probing matter under conditions far outside those accessible from Earth, they have a central role in the quest to understand our place in the Universe and the fundamental laws that govern our existence. Chandra and XMM-Newton are also part of a larger picture wherein advances in subarcsecond imaging and high-resolution spectroscopy across a wide range of wavelengths combine to provide a more complete picture of the phenomena under investigation. As these missions mature, deeper observations and larger samples further expand our knowledge, and new phenomena and collaborations with new facilities forge exciting, often unexpected discoveries. This Review provides the highlights of a wide range of studies, including auroral activity on Jupiter, cosmic-ray acceleration in supernova remnants, colliding neutron stars, missing baryons in low-density hot plasma, and supermassive black holes formed less than a billion years after the Big Bang.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chandra image of the Tycho supernova remnant.
Fig. 2: Unfolded, high-resolution Chandra HETG spectra of V404 Cygni in outburst.
Fig. 3: Chandra image of Circinus X-1.
Fig. 4: The XMM-Newton observation of the X-ray emission from the central 300 pc by 500 pc of the Milky Way.
Fig. 5: The XMM-Newton high-resolution spectrum of the luminous quasar PDS 456.
Fig. 6: XMM-Newton time lag versus energy spectrum.
Fig. 7: Light curves showing nine-hour quasi-periodic eruptions from the low-mass BH GSN 069 during a TDE outburst.
Fig. 8: Composite image of Pictor A.
Fig. 9: Combined Chandra, XMM-Newton and Röntgensatellit (ROSAT) images reveal a cold front in the Perseus cluster.
Fig. 10: Significant absorption features (labelled) associated with the WHIM in the XMM-Newton Reflection Grating Spectrometer (RGS) spectra of the BL Lac object 1ES 1553+113.

Similar content being viewed by others

Change history

  • 24 June 2022

    In the version of this article initially published, the original copyright holder shown (Springer Nature) was incorrect and the copyright has been amended to © Smithsonian under exclusive licence to Springer Nature Limited in the HTML and PDF versions of the article. Further, the text in the third-to-last sentence, reading, in part, “comparable with Chandra, extending to 10’ off-axis”, 10’ was mistakenly edited to read 10” in the original version.

References

  1. Santos-Lleo, M., Schartel, N., Tananbaum, H., Tucker, W. & Weisskopf, M. C. The first decade of science with Chandra and XMM-Newton. Nature 462, 997–1004 (2009). Review of the first decade of Chandra and XMM science, including many of the major breakthroughs and paradigm shifts that have revolutionized X-ray astronomy and beyond.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Kimura, T. et al. Jupiter’s X-ray and EUV auroras monitored by Chandra, XMM-Newton, and Hisaki satellite. J. Geophys. Res. Space Phys. 121, 2308–2320 (2016).

    Article  ADS  CAS  Google Scholar 

  3. Dunn, W. R. et al. The independent pulsations of Jupiter’s northern and southern X-ray auroras. Nat. Astron. 1, 758–764 (2017).

    Article  ADS  Google Scholar 

  4. Robrade, J. & Schmitt, J. H. M. M. Coronal activity cycles in action—X-rays from α Centauri A/B. Preprint at https://arxiv.org/abs/1612.06570 (2016).

  5. Robrade, J., Schmitt, J. H. M. M. & Favata, F. Coronal activity cycles in nearby G and K stars. XMM-Newton monitoring of 61 Cygni and α Centauri. Astron. Astrophys. 543, 84–94 (2012).

    Article  ADS  Google Scholar 

  6. Wargelin, B. J., Saar, S. H., Pojmański, G., Drake, J. J. & Kashyap, V. L. Optical, UV, and X-ray evidence for a 7-yr stellar cycle in Proxima Centauri. Mon. Not. R. Astron. Soc. 464, 3281–3296 (2017).

    Article  ADS  Google Scholar 

  7. Wright, N. J. & Drake, J. Solar-type dynamo behaviour in fully convective stars without a tachocline. Nature 535, 526–528 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Oskinova, L. M. et al. Discovery of X-ray pulsations from a massive star. Nat. Commun. 5, 4024 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Roccatagliata, V. et al. Disk evolution in OB associations: deep Spitzer/IRAC observations of IC 1795. Astrophys. J. 733, 113–132 (2011).

    Article  ADS  Google Scholar 

  10. Guarcello, M. G., Micela, G., Peres, G., Prisinzano, L. & Sciortino, S. Chronology of star formation and disk evolution in the Eagle Nebula. Astron. Astrophys. 521, A61–A77 (2010).

    Article  ADS  Google Scholar 

  11. Hirose, S. & Turner, N. J. Heating and cooling protostellar disks. Astrophys. J. 732L, 30 (2011).

    Article  ADS  Google Scholar 

  12. Mulders, G. et al. An increase in the mass of planetary systems around lower-mass stars. Astrophys. J. 814, 130–139 (2015).

    Article  ADS  Google Scholar 

  13. Wheatley, P. J., Louden, T., Bourrier, V., Ehrenreich, D. & Gillon, M. Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST-1. Mon. Not. R. Astron. Soc. 465, L74–L78 (2017).

    Article  ADS  CAS  Google Scholar 

  14. Janka, H.-T. Explosion mechanisms of core-collapse supernovae. Ann. Rev. Nucl. Part. Sci. 62, 407–451 (2012).

    Article  ADS  CAS  Google Scholar 

  15. Smith, N. et al. Endurance of SN 2005ip after a decade: X-rays, radio and Hα like SN 1988Z require long-lived pre-supernova mass-loss. Mon. Not. R. Astron. Soc. 466, 3021–3034 (2017).

    Article  ADS  CAS  Google Scholar 

  16. Kamble, A. Progenitors of type IIB supernovae in the light of radio and X-rays from SN 2013DF. Astrophys. J. Suppl. Ser. 818, 111–123 (2016).

    Article  Google Scholar 

  17. Maeda, K., Katsuda, S., Bamba, A., Terada, Y. & Fukazawa, Y. Long-lasting X-ray emission from type IIb supernova 2011dh and mass-loss history of the yellow supergiant progenitor. Astrophys. J. 785, 95–106 (2014).

    Article  ADS  Google Scholar 

  18. Margutti, R. Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. Astrophys. J. 864, 45–59 (2018).

    Article  ADS  CAS  Google Scholar 

  19. Frank, K. A. et al. Chandra observes the end of an era for SN1987A. Astrophys. J. 829, 40 (2016).

    Article  ADS  CAS  Google Scholar 

  20. Blandford, R. & Eichler, D. Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1–75 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Giordano, F. et al. Fermi Large Area Telescope detection of the young supernova remnant Tycho. Astrophys. J. 744, L2–L7 (2012).

    Article  ADS  CAS  Google Scholar 

  22. Atoyan, A. & Dermer, C. D. Gamma rays from the Tycho supernova remnant: multi-zone versus single-zone modeling. Astrophys. J. 749, L26–L30 (2012).

    Article  ADS  CAS  Google Scholar 

  23. Bykov, A. M., Ellison, D. C., Osipov, S. M., Pavlov, G. G. & Uvarov, Y. A. X-ray stripes in Tycho’s supernova remnant: synchrotron footprints of a nonlinear cosmic-ray-driven instability. Astrophys. J. 735, L40–L50 (2011).

    Article  ADS  Google Scholar 

  24. Eriksen, K. A. et al. Evidence for particle acceleration to the knee of the cosmic ray spectrum in Tycho’s supernova remnant. Astrophys. J. 728, L28–L32 (2011). Chandra’s exquisite spatial resolution has revealed direct evidence of cosmic-ray acceleration in an SNR that has been predicted for many years.

    Article  ADS  CAS  Google Scholar 

  25. Chakraborti, S., Childs, F. & Soderberg, A. Young remnants of type Ia supernovae and their progenitors: a study of SNR G1.9+0.3. Astrophys. J. 819, 37–45 (2016).

    Article  ADS  Google Scholar 

  26. Burkey, M. T., Reynolds, S. P., Borkowski, K. J. & Blondin, J. M. X-ray emission from strongly asymmetric circumstellar material in the remnant of Kepler’s supernova. Astrophys. J. 764, 63–68 (2013).

    Article  ADS  Google Scholar 

  27. Broersen, S., Chiotellis, A., Vink, J. & Bamba, A. The many sides of RCW 86: a type Ia supernova remnant evolving in its progenitor's wind bubble. Mon. Not. R. Astron. Soc. 441, 3040–3054 (2014).

    Article  ADS  CAS  Google Scholar 

  28. Halpern, J. P. & Gotthelf, E. V. Spin-down measurement of PSR J1852+0040 in Kesteven 79: central compact objects as anti-magnetars. Astrophys. J. 709, 436–446 (2010).

    Article  ADS  Google Scholar 

  29. Halpern, J. P. & Gotthelf, E. V. On the spin-down and magnetic field of the X-ray pulsar 1E 1207.4−5209. Astrophys. J. 733, L28 (2011).

    Article  ADS  Google Scholar 

  30. Gotthelf, J. E. V., Halpern, J. P. & Alford, J. The spin-down of PSR J0821−4300 and PSR J1210−5226: confirmation of central compact objects as anti-magnetars. Astrophys. J. 765, 58–73 (2013).

    Article  ADS  Google Scholar 

  31. Mereghetti, S. The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars. Astron. Astrophys. Rev. 15, 225–287 (2008).

    Article  ADS  Google Scholar 

  32. Younes, G. et al. The wind nebula around magnetar Swift J1834.9−0846. Astrophys. J. 824, 138–149 (2016).

    Article  ADS  Google Scholar 

  33. Rea, N. et al. The outburst decay of the low magnetic field magnetar SGR 0418+5729. Astrophys. J. 770, 65–78 (2013).

    Article  ADS  Google Scholar 

  34. Tiengo, A. et al. A variable absorption feature in the X-ray spectrum of a magnetar. Nature 500, 312–314 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. De Luca, A., Caraveo, P. A., Mereghetti, S., Tiengo, A. & Bignami, G. F. A long-period, violently variable X-ray source in a young supernova remnant. Science 313, 81–817 (2006).

    Google Scholar 

  36. Rea, N. et al. Magnetar-like activity from the central compact object in the SNR RCW103. Astrophys. J. 828, L13–L18 (2016).

    Article  ADS  Google Scholar 

  37. Degenaar, N., Ootes, L. S., Reynolds, M. T., Wijnands, R. & Page, D. A cold neutron star in the transient low-mass X-ray binary HETE J1900.1−2455 after 10 yr of active accretion. Mon. Not. R. Astron. Soc. 465, L10–L14 (2017).

    Article  ADS  CAS  Google Scholar 

  38. Gou, L. et al. Confirmation via the continuum-fitting method that the spin of the black hole in Cygnus X-1 is extreme. Astrophys. J. 790, 29–41 (2014).

    Article  ADS  CAS  Google Scholar 

  39. Duro, R. et al. The broad iron Kα line of Cygnus X-1 as seen by XMM-Newton in the EPIC-pn modified timing mode. Astron. Astrophys. 533, L3–L6 (2011).

    Article  ADS  CAS  Google Scholar 

  40. King, A. L., Miller, J. M., Raymond, J., Reynolds, M. T. & Morningstar, W. High-resolution Chandra HETG spectroscopy of V404 Cygni in outburst. Astrophys. J. 813, L37–L34 (2015).

    Article  ADS  CAS  Google Scholar 

  41. Díaz Trigo, M., Miller-Jones, J. C. A., Migliari, S., Broderick, J. W. & Tzioumis, T. Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U1630-47. Nature 504, 260–262 (2013).

    Article  ADS  CAS  Google Scholar 

  42. Vink, J. Supernova remnants: the X-ray perspective. Astron. Astrophys. Rev. 20, 49–168 (2012).

    Article  ADS  Google Scholar 

  43. Heinz, S. et al. The youngest known X-ray binary: Circinus X-1 and its natal supernova remnant. Astrophys. J. 779, 171–178 (2013). Uses the X-ray light echoes from dust clouds along the line of sight during a Circinus X-1 outburst to accurately measure its distance and thus luminosity and age.

    Article  ADS  CAS  Google Scholar 

  44. Papitto, A. et al. Swings between rotation and accretion power in a binary millisecond pulsar. Nature 501, 517–520 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Pinto, C., Middleton, M. J. & Fabian, A. C. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources. Nature 533, 64–67 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Carpano, S., Haberl, F., Maitra, C. & Vasilopoulos, G. Discovery of pulsations from NGC 300 ULX1 and its fast period evolution. Mon. Not. R. Astron. Soc. 476, L45–L49 (2018).

    Article  ADS  CAS  Google Scholar 

  47. Walton, D. J. et al. Evidence for pulsar-like emission components in the broadband ULX sample. Astrophys. J. 856, 128–140 (2018).

    Article  ADS  CAS  Google Scholar 

  48. Brightman, M. et al. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source. Nat. Astron. 2, 312–313 (2018).

    Article  ADS  Google Scholar 

  49. Heinz, S. et al. Lord of the rings: a kinematic distance to Circinus X-1 from a giant X-ray light echo. Astrophys. J. 806, 265–283 (2015).

    Article  ADS  Google Scholar 

  50. Pintore, F. et al. Behind the dust curtain: the spectacular case of GRB 160623A. Mon. Not. R. Astron. Soc. 472, 1465–1472 (2017).

    Article  ADS  CAS  Google Scholar 

  51. Heinz, S. et al. A joint Chandra and Swift view of the 2015 X-ray dust-scattering echo of V404 Cygni. Astrophys. J. 825, 15–34 (2016).

    Article  ADS  Google Scholar 

  52. Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12–L70 (2017).

    Article  ADS  Google Scholar 

  53. Haggard, D. et al. A deep Chandra X-ray study of neutron star coalescence GW170817. Astrophys. J. 848, L25–L30 (2017).

    Article  ADS  CAS  Google Scholar 

  54. Margutti, R. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. V. Rising X-ray emission from an off-axis jet. Astrophys. J. 848, L20–L26 (2017).

    Article  ADS  CAS  Google Scholar 

  55. Troja, E. et al. The X-ray counterpart to the gravitational-wave event GW170817. Nature 551, 71–74 (2017). These three papers (refs. 53, 54 and 55) report the X-ray detections of the gravitational-wave source GW170817, the first electromagnetically detected gravitational-wave source, and a neutron star–neutron star merger.

    Article  ADS  CAS  Google Scholar 

  56. Troja, E. et al. A year in the life of GW 170817: the rise and fall of a structured jet from a binary neutron star merger. Mon. Not. R. Astron. Soc. 489, 1919–1926 (2019).

    ADS  CAS  Google Scholar 

  57. D’Avanzo, P. et al. The evolution of the X-ray afterglow emission of GW170817/GRB170817A in XMM-Newton observations. Astron. Astrophys. 613, L1–L5 (2018).

    Article  ADS  CAS  Google Scholar 

  58. Troja, E. et al. A luminous blue kilonova and an off-axis jet from a compact binary merger at z = 0.1341. Nat. Commun. 9, 4089 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fornasini, F. M. et al. Low-luminosity AGN and X-ray binary populations in COSMOS star-forming galaxies. Astrophys. J. 865, 43–60 (2018).

    Article  ADS  Google Scholar 

  60. Nardini, E. et al. The exceptional soft X-ray halo of the galaxy merger NGC 6240. Astrophys. J. 765, 141–160 (2013).

    Article  ADS  CAS  Google Scholar 

  61. Roberts, S. R., Jiang, Y.-F., Wang, Q. D. & Ostriker, J. P. Towards self-consistent modelling of the Sgr A* accretion flow: linking theory and observation. Mon. Not. R. Astron. Soc. 466, 1477–1490 (2017).

    Article  ADS  CAS  Google Scholar 

  62. Wang, Q. D. et al. Dissecting X-ray-emitting gas around the center of our Galaxy. Science 341, 981–983 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Ponti, G. et al. An X-ray chimney extending hundreds of parsecs above and below the Galactic Centre. Nature 567, 347–350 (2019). XMM-Newton has mapped X-ray emission extending up to and into the ‘Fermi bubble’ region.

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Ponti, G. et al. A powerful flare from Sgr A* confirms the synchrotron nature of the X-ray emission. Mon. Not. R. Astron. Soc. 468, 2447–2468 (2017).

    Article  ADS  CAS  Google Scholar 

  65. Terrier, R. et al. An X-ray survey of the central molecular zone: variability of the Fe Kα emission line. Astron. Astrophys. 612, A102–A117 (2018).

    Article  CAS  Google Scholar 

  66. Risaliti, G. et al. A rapidly spinning supermassive black hole at the centre of NGC 1365. Nature 494, 449–451 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Kara, E. et al. A global look at X-ray time lags in Seyfert galaxies. Mon. Not. R. Astron. Soc. 462, 511–531 (2016).

    Article  ADS  CAS  Google Scholar 

  68. Miller, J. M., Bautz, M. W. & McNamara, B. R. Chandra imaging of the outer accretion flow onto the black hole at the center of the Perseus cluster. Astrophys. J. 850, L3–L8 (2017).

    Article  ADS  CAS  Google Scholar 

  69. Reis, R. C., Reynolds, M. T., Miller, J. M. & Walton, D. J. Reflection from the strong gravity regime in a lensed quasar at redshift z = 0.658. Nature 507, 207–209 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Chartas, G. et al. Revealing the structure of an accretion disk through energy-dependent X-ray microlensing. Astrophys. J. 757, 137–148 (2012).

    Article  ADS  CAS  Google Scholar 

  71. Mosquera, A. M. et al. The structure of the X-ray and optical emitting regions of the lensed quasar Q 2237+0305. Astrophys. J. 769, 53–60 (2013).

    Article  ADS  Google Scholar 

  72. Blackburne, J. A., Kochanek, C. S., Chen, B., Dai, X. & Chartas, G. The optical, ultraviolet, and X-ray structure of the quasar HE 0435−1223. Astrophys. J. 789, 125–135 (2014).

    Article  ADS  CAS  Google Scholar 

  73. Tombesi, F., Cappi, M., Reeves, J. N. & Braito, V. Evidence for ultrafast outflows in radio-quiet AGNs—III. Location and energetics. Mon. Not. R. Astron. Soc. 422, L1–L5 (2012).

    Article  ADS  Google Scholar 

  74. Nardini, E. et al. Black hole feedback in the luminous quasar PDS 456. Science 347, 860–863 (2015). This paper presents strong evidence for feedback driven by the SMBH in a quasar.

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Parker, M. L. et al. The response of relativistic outflowing gas to the inner accretion disk of a black hole. Nature 543, 83–86 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Kara, E., Miller, J. M., Reynolds, C. & Dai, L. Relativistic reverberation in the accretion flow of a tidal disruption event. Nature 535, 388–390 (2016). Reverberation mapping of Fe Kα in a TDE discovers accretion at 100 times the Eddington rate.

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Miller, J. M. et al. Flows of X-ray gas reveal the disruption of a star by a massive black hole. Nature 526, 542–545 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Lin, D. et al. A likely decade-long sustained tidal disruption event. Nat. Astron. 1, 0033 (2017).

    Article  ADS  Google Scholar 

  79. Lin, D. et al. A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster. Nat. Astron. 2, 656–661 (2018).

    Article  ADS  Google Scholar 

  80. Gierliński, M., Middleton, M., Ward, M. & Done, C. A periodicity of ~1h in X-ray emission from the active galaxy RE J1034+396. Nature 455, 369–371 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  81. Reis, R. C. et al. A 200-second quasi-periodicity after the tidal disruption of a star by a dormant black hole. Science 337, 949–951 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Pasham, D. J. et al. A loud quasi-periodic oscillation after a star is disrupted by a massive black hole. Science 363, 531–534 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Miniutti, G. et al. Nine-hour X-ray quasi-periodic eruptions from a low-mass black hole galactic nucleus. Nature 573, 381–384 (2019). Discovery of powerful (100 times) eruptions from a low-mass nuclear BH with a 9-h period.

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Brandt, W. N. & Alexander, D. M. Cosmic X-ray surveys of distant active galaxies. The demographics, physics, and ecology of growing supermassive black holes. Astron. Astrophys. Rev. 23, 1–92 (2015).

    Article  ADS  Google Scholar 

  85. Lapi, A. et al. The coevolution of supermassive black holes and massive galaxies at high redshift. Astrophys. J. 782, 69–93 (2014).

    Article  ADS  Google Scholar 

  86. Buchner, J. et al. Obscuration-dependent evolution of active galactic nuclei. Astrophys. J. 802, 89–110 (2015).

    Article  ADS  Google Scholar 

  87. Rangel, C. et al. Evidence for two modes of black hole accretion in massive galaxies at z2. Mon. Not. R. Astron. Soc. 440, 3630–3644 (2014).

    Article  ADS  Google Scholar 

  88. Georgakakis, A. et al. The X-ray luminosity function of active galactic nuclei in the redshift interval z=3–5. Mon. Not. R. Astron. Soc. 453, 1946–1964 (2015).

    Article  ADS  CAS  Google Scholar 

  89. Aird, J. et al. The evolution of the X-ray luminosity functions of unabsorbed and absorbed AGNs out to z5. Mon. Not. R. Astron. Soc. 451, 1892–1927 (2015).

    Article  ADS  Google Scholar 

  90. Nanni, R., Vignali, C., Gilli, R., Moretti, A. & Brandt, W. N. The X-ray properties of z=6 luminous quasars. Astron. Astrophys. 603A, 128–139 (2017).

    Article  ADS  CAS  Google Scholar 

  91. Pacucci, F., Ferrara, A., Volonteri, M. & Dubus, G. Shining in the dark: the spectral evolution of the first black holes. Mon. Not. R. Astron. Soc. 454, 3771–3777 (2015).

    Article  ADS  Google Scholar 

  92. Chilingarian, I. V. et al. A population of bona fide intermediate-mass black holes identified as low-luminosity active galactic nuclei. Astrophys. J. 863, 1–15 (2018).

    Article  ADS  CAS  Google Scholar 

  93. Mezcua, M., Civano, F., Fabbiano, G., Miyaji, T. & Marchesi, S. A population of intermediate-mass black holes in dwarf starburst galaxies up to redshift=1.5. Astrophys. J. 817, 20–29 (2016).

    Article  ADS  Google Scholar 

  94. Baldassare, V. F., Reines, A. E., Gallo, E. & Greene, J. E. A 50,000 M solar mass black hole in the nucleus of RGG 118. Astrophys. J. 809, L14–L19 (2015).

    Article  ADS  CAS  Google Scholar 

  95. Pardo, K. et al. X-ray detected active galactic nuclei in dwarf galaxies at 0 < z < 1. Astrophys. J. 831, 203–217 (2016).

    Article  ADS  Google Scholar 

  96. Komossa, S. et al. Discovery of a binary active galactic nucleus in the ultraluminous infrared galaxy NGC 6240 using Chandra. Astrophys. J. 582, L15–L19 (2003).

    Article  ADS  CAS  Google Scholar 

  97. Green, P. J. et al. SDSS J1254+0846: a binary quasar caught in the act of merging. Astrophys. J. 710, 1578–1588 (2010).

    Article  ADS  Google Scholar 

  98. Ellison, S. L., Secrest, N. J., Mendel, J. T., Satyapal, S. & Simard, L. Discovery of a dual active galactic nucleus with 8 kpc separation. Mon. Not. R. Astron. Soc. 470, L49–L53 (2017).

    Article  ADS  CAS  Google Scholar 

  99. Koss, M. et al. Chandra discovery of a binary active galactic nucleus in Mrk 739. Astrophys. J. 735, L42–L48 (2011).

    Article  ADS  CAS  Google Scholar 

  100. Comerford, J. M., Pooley, D., Gerke, B. F. & Madejski, G. M. Chandra observations of a 1.9 kpc separation double X-ray source in a candidate dual active galactic nucleus galaxy at z = 0.16. Astrophys. J. 737, L19–L23 (2011).

    Article  ADS  CAS  Google Scholar 

  101. Gu, L. et al. Observations of a pre-merger shock in colliding clusters of galaxies. Nat. Astron. 3, 838–843 (2019).

    Article  ADS  Google Scholar 

  102. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article  ADS  CAS  Google Scholar 

  103. Forman, W. et al. Partitioning the outburst energy of a low Eddington accretion rate AGN at the center of an elliptical galaxy: the recent 12 Myr history of the supermassive black hole in M87. Astrophys. J. 844, 122–143 (2017).

    Article  ADS  CAS  Google Scholar 

  104. Arevalo, P., Churazov, E., Zhuravleva, I., Forman, W. R. & Jones, C. On the nature of X-ray surface brightness fluctuations in M87. Astrophys. J. 818, 14–29 (2016).

    Article  ADS  Google Scholar 

  105. Fabian, A. C. et al. A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 366, 417–428 (2006).

    Article  ADS  CAS  Google Scholar 

  106. McNamara, B. R. & Nulsen, P. E. J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 14, 055023–055062 (2012).

    Article  ADS  Google Scholar 

  107. Hardcastle, M. et al. Deep Chandra observations of Pictor A. Mon. Not. R. Astron. Soc. 455, 3526–3545 (2016).

    Article  ADS  Google Scholar 

  108. McDonald, M. et al. Deep Chandra, HST-COS, and MegaCam observations of the Phoenix cluster: extreme star formation and AGN feedback on hundred kiloparsec scales. Astrophys. J. 811, 111–128 (2015).

    Article  ADS  CAS  Google Scholar 

  109. Hlavacek-Larrondo, J. et al. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: tracing the evolution of AGN feedback in clusters of galaxies out to z=1.2. Astrophys. J. 805, 35–47 (2015). Demonstrates that AGN feedback in clusters of galaxies is a long-term (about 7 Gyr) phenomenon.

    Article  ADS  Google Scholar 

  110. Giodini, S. et al. Radio galaxy feedback in X-ray-selected groups from COSMOS: the effect on the intracluster medium. Astrophys. J. 714, 218–228 (2010).

    Article  ADS  Google Scholar 

  111. Leauthaud, A. et al. A weak lensing study of X-ray groups in the Cosmos Survey: form and evolution of the mass–luminosity relation. Astrophys. J. 709, 97–114 (2010).

    Article  ADS  Google Scholar 

  112. Mantz, A. B. et al. The metallicity of the intracluster medium over cosmic time: further evidence for early enrichment. Mon. Not. R. Astron. Soc. 472, 2877–2888 (2017).

    Article  ADS  CAS  Google Scholar 

  113. Böhringer, H. & Werner, N. X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories. Astron. Astrophys. Rev. 18, 127–196 (2010).

    Article  ADS  Google Scholar 

  114. de Plaa, J. et al. CHEERS: the chemical evolution RGS sample. Astron. Astrophys. 607, 98–113 (2017).

    Article  CAS  Google Scholar 

  115. Mernier, F. et al. Radial metal abundance profiles in the intra-cluster medium of cool-core galaxy clusters, groups, and ellipticals. Astron. Astrophys. 603, 80–106 (2017).

    Article  CAS  Google Scholar 

  116. Wang, T. et al. Discovery of a galaxy cluster with a violently starbursting core at z=2.506. Astrophys. J. 828, 56–70 (2016).

    Article  ADS  Google Scholar 

  117. Su, Y. et al. Deep Chandra observations of NGC 1404: cluster plasma physics revealed by an infalling early-type galaxy. Astrophys. J. 834, 74–82 (2017).

    Article  ADS  Google Scholar 

  118. Eckert, D. et al. Deep Chandra observations of the stripped galaxy group falling into Abell 2142. Astron. Astrophys. 605, A25–A36 (2017).

    Article  CAS  Google Scholar 

  119. Sanders, J. et al. A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies. Mon. Not. R. Astron. Soc. 457, 82–109 (2016).

    Article  ADS  CAS  Google Scholar 

  120. Walker, S. A., ZuHone, J., Fabian, A. & Sanders, J. The split in the ancient cold front in the Perseus cluster. Nat. Astron. 2, 292–296 (2018).

    Article  ADS  Google Scholar 

  121. Cen, R. & Ostriker, J. P. Where are the baryons? Astrophys. J. 514, 1–6 (1999).

    Article  ADS  CAS  Google Scholar 

  122. Eckert, D. et al. Warm-hot baryons comprise 5–10 per cent of filaments in the cosmic web. Nature 528, 105–107 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nicastro, F. et al. Observations of the missing baryons in the warm-hot intergalactic medium. Nature 558, 406–409 (2018). These two papers (refs. 123 and 124) report significant detection of the WHIM, thought to be the location of the mission baryons.

    Article  ADS  CAS  PubMed  Google Scholar 

  124. Kovacs, O. E., Bogdan, A., Smith, R. K., Kraft, R. P. & Forman, W. R. Detection of the missing baryons toward the sightline of H1821+643. Astrophys. J. 872, 83K (2019).

    Article  ADS  CAS  Google Scholar 

  125. Gaggero, D. et al. Searching for primordial black holes in the radio and X-ray sky. Phys. Rev. Lett. 118, 241101 (2017).

    Article  ADS  PubMed  Google Scholar 

  126. Harvey, D., Massey, R., Kitching, T., Taylor, A. & Tittley, E. The non-gravitational interactions of dark matter in colliding galaxy clusters. Science 347, 1462–1465 (2015). This study places constraints on the self-interaction cross-section of dark matter based on multiwavelength observations of interacting clusters of galaxies.

    Article  ADS  CAS  PubMed  Google Scholar 

  127. Kravtsov, A. V. & Borgani, S. Formation of galaxy clusters. Annu. Rev. Astron. Astrophys. 50, 353–409 (2012).

    Article  ADS  Google Scholar 

  128. Mantz, A. B. et al. Cosmology and astrophysics from relaxed galaxy clusters—II. Cosmological constraints. Mon. Not. R. Astron. Soc. 440, 2077–2098 (2014).

    Article  ADS  Google Scholar 

  129. Mantz, A. B. et al. Weighing the giants—IV. Cosmology and neutrino mass. Mon. Not. R. Astron. Soc. 446, 2205–2225 (2015).

    Article  ADS  CAS  Google Scholar 

  130. Pierre, M. et al. The XXL Survey. I. Scientific motivations—XMM-Newton observing plan - Follow-up observations and simulation programme. Astron. Astrophys. 592, 1–15 (2016).

    Article  Google Scholar 

  131. Pacaud, F. et al. The XXL Survey. II. The bright cluster sample: catalogue and luminosity function. Astron. Astrophys. 592, A2–A26 (2016).

    Article  Google Scholar 

  132. Planck Collaboration. Planck 2015 results. XXIV. Cosmology from Sunyaev–Zeldovich cluster counts. Astron. Astrophys. 594, A24–A42 (2016).

    Article  CAS  Google Scholar 

  133. Risaliti, G. & Lusso, E. A Hubble diagram for quasars. Astrophys. J. 815, 33–48 (2015).

    Article  ADS  Google Scholar 

  134. Risaliti, G. & Lusso, E. Cosmological constraints from the Hubble diagram of quasars at high redshift. Nat. Astron. 3, 272–277 (2019). This study develops a tool for measuring cosmological distances at high redshift using the optical versus ultraviolet luminosity in quasars; the results suggest a deviation at high redshifts.

    Article  ADS  Google Scholar 

  135. Medvedev, P., Gilfanov, M., Sazonov, S., Schartel, N. & Sunyaev, R. XMM-Newton observations of the extremely X-ray luminous quasar CFHQS J142952+544717=SRGE J142952.1+544716 at redshift z = 6.18. Mon. Not. R. Astron. Soc. 504, 576–582 (2021).

    Article  ADS  Google Scholar 

  136. Barcons, X. et al. Athena: ESA’s X-ray observatory for the late 2020s. Astron. J. 338, 153–158 (2017).

    Google Scholar 

  137. Lynx Team The Lynx Mission Concept Study Interim Report. Preprint at https://arxiv.org/abs/1809.09642 (2018).

  138. Wilkes, B. & Tucker, W. (eds) The Chandra X-ray Observatory Exploring the High Energy Universe (IOP, 2019). A comprehensive review of Chandra and its place within astronomy and its science authored by experts in their respective fields.

  139. Schwartz, D. A. et al. Chandra discovery of a 100 kiloparsec X-ray jet in PKS 0637-752. Astrophys. J. 540, 69–72 (2000).

    Article  Google Scholar 

  140. Tamura, T. et al. X-ray spectroscopy of the cluster of galaxies Abell 1795 with XMM-Newton. Astron. Astrophys. 365, L87–L92 (2001).

    Article  ADS  CAS  Google Scholar 

  141. Fabian, A. C. et al. A deep Chandra observation of the Perseus cluster: shocks and ripples. Mon. Not. R. Astron. Soc. 344, L43–L47 (2003).

    Article  ADS  Google Scholar 

  142. Igoshev, A. P., Hollerbach, R., Wood, T. & Gourgouliatos, K. N. Strong toroidal magnetic fields required by quiescent X-ray emission of magnetars. Nat. Astron. 5, 145–149 (2021).

    Article  ADS  Google Scholar 

  143. Alston, W. N. A. et al. A dynamic black hole corona in an active galaxy through X-ray reverberation mapping. Nat. Astron. 4, 597–602 (2020). Measurements of both spin and mass for a BH with reverberation mapping.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

It is an honour, privilege and pleasure to serve on the teams responsible for Chandra and XMM-Newton, and to acknowledge their dedication and excellence over so many years. We acknowledge and thank both NASA and ESA for their continued support for these two missions. We acknowledge the contributions of thousands of individuals, both within the mission projects and around the world, who have worked hard to make these observatories successful. B.J.W. and W.T. acknowledge support from NASA contract NAS8-03060 (Chandra X-ray Center). B.J.W. acknowledges support from the Royal Society and the Wolfson Foundation while at the University of Bristol, UK, and thanks the Institute of Astronomy, Cambridge University, UK, for their hospitality, and the support of a Sheepshank Visiting Fellowship during part of this work.

Author information

Authors and Affiliations

Authors

Contributions

In keeping with the synergistic nature of the Chandra and XMM-Newton missions, all the sections of the manuscript contained discussions of the scientific discoveries made by both Chandra and XMM-Newton. B.J.W. and W.T. concentrated on results from Chandra, and N.S. and M.S.-L. focused on XMM-Newton.

Corresponding author

Correspondence to Belinda J. Wilkes.

Ethics declarations

Competing interests

The authors declare no competing interests

Peer review

Peer review information

Nature thanks Richard Mushotzy and Christopher Reynolds for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilkes, B.J., Tucker, W., Schartel, N. et al. X-ray astronomy comes of age. Nature 606, 261–271 (2022). https://doi.org/10.1038/s41586-022-04481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04481-y

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing