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Two different sarbecoviruses have caused major human outbreaks in the last two

decades'* Both of these sarbecoviruses, SARS-CoV-1and SARS-CoV-2, engage ACE2
via the spike receptor-binding domain (RBD)*®. However, binding to ACE2 orthologs
from humans, bats, and other species has been observed only sporadically among the
broader diversity of bat sarbecoviruses” ™. Here, we use high-throughput assays® to
trace the evolutionary history of ACE2 binding acrossadiverse range of
sarbecoviruses and ACE2 orthologs. We find that ACE2 binding is an ancestral trait of
sarbecovirus RBDs that has subsequently been lost in some clades. Furthermore, we
reveal that bat sarbecoviruses from outside Asiacan bind ACE2. Moreover, ACE2
binding is highly evolvable: for many sarbecovirus RBDs there are single amino-acid
mutations that enable binding to new ACE2 orthologs. However, the effects of
individual mutations can differ markedly between viruses, as illustrated by the N501Y
mutation which enhances human ACE2 binding affinity of several SARS-CoV-2 variants
of concern?but severely dampens it for SARS-CoV-1. Our results point to the deep
ancestral origin and evolutionary plasticity of ACE2 binding, broadening
consideration of therange of sarbecoviruses with spillover potential.

BothSARS-CoV-2andSARS-CoV-1utilizehumanACE2astheir receptor?™.
Sampling of bats has identified multiple lineages of sarbecoviruses
with RBDs exhibiting different ACE2 binding properties” ™" that
are exchanged via recombination®**, Prior to the emergence of
SARS-CoV-2, all bat sarbecoviruses with a demonstrated ability to bind
any ACE2 ortholog contained RBDs related to SARS-CoV-1and were
sampled from Rhinolophus sinicus and R. affinisbatsin Yunnan province
in southwest China”®"??2, More recently, sarbecoviruses related to
SARS-CoV-2 that bind ACE2 have been found more widely across Asia
and from abroader diversity of Rhinolophus species*'** %, However,
ACE2 binding has not been observed within a prevalent group of sar-
becovirus RBDs sampled in southeast Asia (RBD “Clade 2”)”%Y, nor in
distantly related sarbecoviruses from Africa and Europe (RBD “Clade
3”)" (Figure 1a). Therefore, it is unclear whether ACE2 binding is an
ancestral trait of sarbecovirus RBDs that has been lost in some RBD
lineages, or atrait that wasacquired morerecentlyinasubset of Asian
sarbecovirus RBDs?°. As ACE2 is also variable among Rhinolophus
bats, particularly in the surface recognized by sarbecoviruses?2, it
isimportant to understand how sarbecoviruses acquire the ability to
bind new ACE2 orthologs, including that of humans, via amino-acid
mutations.

Survey of sarbecovirus ACE2 binding

Totrace the evolutionary history of sarbecovirus binding to ACE2,
we assembled a gene library encoding 45 sarbecovirus RBDs span-
ning all four known RBD phylogenetic clades (Fig. 1a, b and Extended

Data Fig.1). We cloned the RBD library into a yeast-surface display
platformthat enables high-throughput measurement of ACE2 binding
avidities via titration assays combining fluorescence-activated cell
sorting (FACS) and deep sequencing' (Extended Data Fig. 2a-d). We
also assembled a panel of recombinant, dimeric ACE2 proteins from
human, civet, pangolin, mouse, and two alleles each from R. affinis and
R.sinicusbats® (Fig.1c). The R. affinis alleles represent the two distinct
RBD-interface sequences found among 23 R. affinis bats from Yun-
nan and Hubei, China. The R. sinicus alleles represent two of the eight
distinct RBD-interface sequences found among 25 R. sinicus bats from
Yunnan, Hubei, Guangdong, and Guangxi provinces and Hong Kong?,
including one allele (3364) that is closest to consensus among the 8
RBD-interface sequences, and another (1434) that does not support
entry by some Clade 1a sarbecoviruses®. We measured the apparent
dissociation constant (K}, ,,,) of each RBD for each of the eight ACE2
orthologs (Fig.1b, d and Extended Data Fig. 2). We performed all experi-
mentsin duplicate usingindependently constructed libraries, and the
measurements were highly correlated between replicates (R*> 0.99,
Extended Data Fig. 2g).

Consistent with a prior survey of human ACE2-mediated cellular
infectivity’, human ACE2 binding is restricted to RBDs within the
SARS-CoV-1and SARS-CoV-2 clades (Fig. 1b), although binding affini-
ties vary among RBDs within these clades. Specifically, the RBDs from
SARS-CoV-2 andrelated viruses from pangolins bind human ACE2 with
high affinity, while the RBD from the bat virus RaTG13 exhibits much
lower affinity. The RBDs of SARS-CoV-lisolates from the 2002-2003
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epidemic bind human ACE2 strongly, whereas RBDs from civet and
sporadic 2004 human isolates (GD03T0013, GZ0402) show weaker
binding, consistent with their civet origin and limited transmission®**°.
SARS-CoV-1-related bat virus RBDs bind to human ACE2, in some cases
with higher affinity than SARS-CoV-litself.

Binding to civet ACE2 was only detected within the SARS-CoV-1
clade whereas pangolin ACE2 binding is more widespread within the
SARS-CoV-2 clade, consistent with viruses isolated from civet or pan-
golin partitioning specifically within each of these clades. Mice are not
anatural host of sarbecoviruses, and RBDs from the SARS-CoV-1and
SARS-CoV-2 clades only bind mouse ACE2 sporadically, typically with
modest to weak affinity relative to other ACE2 orthologs. The highest
binding affinity for mouse ACE2is found in the cluster of RBDs related
to RsSHCO014, which can mediate infection and pathogenesis in mice®.

Binding to ACE2 from R. affinis and particularly R. sinicus bats var-
ies sharply among strains in the SARS-CoV-1and SARS-CoV-2 clades,
consistent with an evolutionary arms race driving ACE2 variation in
Rhinolophus bats?®**. The two R. sinicus bat ACE2 alleles tested only
interacted with SARS-CoV-1isolates and the bat RsSSHC014-cluster
RBDs, whichare notable for their broad ACE2-binding specificity in our
assay. In contrast, we detected strong binding to both R. affinis ACE2
alleles among many RBDs in the SARS-CoV-1 and SARS-CoV-2 clades.
However, the RBDs of the two viruses sampled from R. affinis in our
panel bound only modestly (LYRall) or very weakly (RaTG13) to the
R. affinis ACE2 alleles that we tested.

Strikingly, we detected binding to R. affinis ACE2s by the RBD of the
BtKY72 virus from Kenya® (Fig. 1b, d), the first described binding to
any ACE2 ortholog for asarbecovirus outside of Asia’*. To validate this
finding, we purified the BtKY72 RBD and R. affinis ACE2-Fc fusion pro-
teins recombinantly expressed in human cells and characterized their
interactionusingbiolayer interferometry (BLI). In agreement with the
yeast-display results, the BtKY72 RBD bound to the R. affinis 9479 ACE2
and more weakly to the R. affinis 787 allele (Fig. 1e and Extended Data
Fig.3a). Furthermore, HEK293T cells transfected with the R. affinis 9479
or 787 ACE2 alleles supported entry of vesicular stomatitis virus (VSV)
particles pseudotyped with the BtKY72 spike, thereby demonstrating
ACE2is abona fide entry receptor for this virus (Fig. 1f and Extended
Data Fig. 3¢, d). The geographic range of R. affinis does not extend
outside of Asia®, but this result indicates that BtKY72 may bind ACE2
orthologs of bats found in Africa, though the full range of non-Asian
bat species that harbor sarbecoviruses and their ACE2 sequences are
underexplored™*1%32,

We did not detect ACE2 binding by any of the Clade 2 RBDs. Nine
of the 23 Clade 2 RBDs in our panel were sampled from R. sinicus,
includingin the same caves—and even co-infecting the same R. sinicus
bats®—as ACE2-utilizing SARS-CoV-1-related RBDs. We tested binding
by two Clade 2 RBDs isolated from R. sinicus (YN2013 from Yunnan
and HKU3-1from Hong Kong Special Administrative Region [HKSAR])
to an expanded ACE2 panel comprising all RBD-interface sequences
observed in R. sinicus bats*, including those sampled in Yunnan and
HKSAR. In contrast to SARS-CoV-1Urbani and RsSHCO014 (a Clade 1a
RBD isolated from R. sinicus in Yunnan™), YN2013 and HKU3-1RBDs
did not bind toany of the eight R. sinicus ACE2 alleles (Extended Data
Fig. 4). Prior experiments with Clade 2 RBDs have also demonstrated
alack of binding to R. pearsonii” and human”®2'7 ACE2. Clade 2 RBDs
have two large deletions within the receptor-binding motif’®'?, which
hasled tothe hypothesis that this clade utilizes some unidentified alter-
native receptor, which could be bound by either the RBD or the spike
N:-terminal domain®¢, Our results are consistent with this hypothesis,
thoughwe cannot rule out that Clade 2 RBDs bind other ACE2 orthologs
that have not yet been tested.

Ancestral origins of ACE2 binding
Our finding that the BtKY72 RBD binds ACE2 suggests that ACE2
binding was present inthe ancestor of all sarbecoviruses prior to the
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split of Asianand non-Asian RBD clades (Fig. 2a). To test this hypoth-
esis, we used ancestral sequence reconstruction® to infer plausible
sequences representing ancestral nodes on the sarbecovirus RBD
phylogeny (Fig. 2a and Extended Data Fig. 5a). We evaluated ACE2
binding for the most probable reconstructed ancestral sequences
(Fig.2band Extended Data Fig.5b) and in alternative reconstructions
that incorporate statistical or phylogenetic ambiguities inherent
to ancestral reconstruction (Extended Data Fig. 6). Consistent with
the distribution of ACE2 binding among extant sarbecoviruses, the
reconstructed ancestor of all sarbecovirus RBDs (AncSarbecovirus)
bound the R. affinis 9479 ACE2 allele (Fig. 2b). Broader ACE2 binding
(including to human ACE2) was acquired on the branch connecting
AncSarbecovirus to the ancestor of the three Asian sarbecoviruses
RBD clades (AncAsia). ACE2 binding was then lost along the branch
to the Clade 2 ancestor, due to the combination of 48 amino-acid
substitutions and 2 deletions within the ACE2-binding region that
occurred along this branch (Fig. 2c).

This evolutionary history of ACE2 binding is robust to some but not
allexplorations of uncertainty in our phylogenetic reconstructions®*,
Thekey phenotypes representedinFig.2b are robust to uncertainties
in the topology of the RBD phylogeny (Extended Data Fig. 6a, b) or
possible recombination within the RBD impacting the cluster of RBDs
related to RsSHCO14 (Extended Data Fig. 6¢-f). However, statistical
uncertainty in the identity of some ACE2-contact positions impacts
our inferences, with some reasonably plausible “second-best’ recon-
structed states altering ancestral phenotypes (Extended Data Fig. 6b).
Nonetheless, our hypothesis of an ancestral origin of sarbecovirus ACE2
bindingis supported by the most plausible ancestral reconstructions
as wellas the distribution of ACE2 binding among directly sampled
sarbecovirus RBDs in Fig. 1a, b.

Evolvability of ACE2 binding

To explore how easily RBDs can acquire ACE2 binding via single
amino-acid mutations, we constructed mutant libraries in 14 RBD
backgrounds spanning the RBD phylogeny. In each background, we
introduced all single amino-acid mutations at six RBD positions previ-
ously implicated in the evolution of receptor binding in SARS-CoV-2
and SARS-CoV-1"2#° (SARS-CoV-2 residues L455, F486,Q493, 5494, Q498,
and N501, Fig. 3a; we use SARS-CoV-2 numbering for mutations in all
homologs below). Werecovered nearly all the intended 1,596 mutations,
and measured binding of each mutant RBD to each ACE2 ortholog via
high-throughput titrations as described above.

The results show that ACE2 binding is a remarkably evolvable trait
(Fig. 3b, c and Extended Data Fig. 7). In virtually all cases in which a
parental RBD binds a particular ACE2, there are single amino-acid muta-
tions thatimprove binding by >5-fold. Therefore, ACE2 binding can
be easily enhanced via mutation, which may facilitate the frequent
host jumps seen among sarbecoviruses*. Notably, our data on mouse
ACE2 binding could inform the development of mouse-adapted sar-
becovirus strains for in vivo studies®***, including potentially safer
strains that bind to mouse but not human ACE2 (see Extended Data
Fig. 8 for details).

In the majority of cases where an RBD does not bind a particular
ACE2 ortholog, single mutations can confer low to moderate binding
affinity (Fig. 3b, c). The only exceptions are BM48-31 and AncClade2,
for which none of the tested mutations enabled binding to any of the
ACE2s. We found that the mutation K493Y in AncSarbecovirus enables
binding to human ACE2 (Fig. 3b and Extended Data Fig. 7), although
this particular mutation did not occur onthe branch to AncAsiawhere
we inferred human ACE2 binding was historically acquired, illustrating
the existence of multiple evolutionary paths to acquiring human ACE2
binding. We identified single mutations at positions 493,498, and 501
thatenable the BtKY72 RBD to bind human ACE2 (Fig. 3b and Extended
Data Fig. 7), suggesting human ACE2 binding is evolutionarily acces-
siblein this lineage.



We validated that mutations K493Y and T498W enable the RBD of the
African sarbecovirus BtKY72 to interact with human ACE2 using puri-
fied recombinant proteins. Binding to human ACE2-Fcis not detectable
with the parental BtKY72 RBD using BLI but is conferred by T498W and
enhanced for the K493Y/T498W double mutant (Fig. 3d and Extended
Data Fig. 3b). To evaluate if the observed binding translated into cell
entry, we generated VSV particles pseudotyped with the wildtype
or mutant BtKY72 spikes and tested entry in HEK293T cells express-
ing human ACE2. We detected robust spike-mediated entry for the
K493Y/T498W double mutant but not the T498W single mutant (Fig. 3e
and Extended DataFig. 3¢, e), reflecting their apparent avidities (Fig. 3d)
and confirming the evolvability of human ACE2 bindingin this African
sarbecovirus lineage.

Last, we explored how the mutations that enhance ACE2 binding dif-
fer among sarbecovirus backgrounds, reflecting epistatic turnoverin
mutation effects’>*, For example, the N501Y mutation increases human
ACE2 binding affinity for SARS-CoV-2 where it has arisen in variants
of concern*¢, but the homologous mutation in the SARS-CoV-1RBD
(position 487) is highly deleterious for human ACE2 binding (Fig. 3f).
Morebroadly, variationin mutant effects increases as RBD sequences
diverge (Fig. 3g and Extended Data Fig. 9). However, the rate of this
epistatic turnover varies across positions—for example, the effects on
human ACE2 binding for mutations at positions 486 and 494 remain
relatively constant across sequence backgrounds, while variability in
effects of mutations at positions 498 and 501 increases substantially
asRBDs diverge.

New sarbecovirus lineages bind ACE2

Given that ACE2 binding is an ancestral sarbecovirus trait with plastic
evolutionary potential, unsampled sarbecoviruses lineages are likely
capable of binding ACE2 and evolving to bind human ACE2 unless these
traits have been specifically lost as occurred in Clade 2. To test this
idea, we investigated sarbecoviruses reported after the initiation.of
our study, including viruses from Africa'® and Europe*** and a new
RBD lineage represented by RsYNO4 from a R. stheno bat in Yunnan,
China®, which branches separately from the four RBD clades previ-
ously described (Fig. 4a).

We determined the ACE2-binding capabilities of these RBDs using
our yeast-display platform. We found that two newly described sar-
becoviruses from the Caucasus region of Russia® bind ACE2 (Fig. 4b):
the Khosta-1RBD binds to R. affinis ACE2s with avidity that is improved
by the T498W mutation, and strikingly, the Khosta-2 RBD binds to
human ACE2 even in the absence of mutation. The Khosta-2 RBD was
also recently shown to allow cell entry via human ACE2*. This finding
indicates that the evolvability of human ACE2 binding that we describe
for other African and European sarbecoviruses has been realized in
naturally circulating viruses thatare geographically and phylogeneti-
cally separated from the southeast Asian clades from which spillover
hasbeen described to date. Our results also reinforce our observation
of ACE2 binding in African sarbecoviruses (Fig. 4c): like BtKY72, RBDs
of the newly described African sarbecoviruses PDF-2380 and PRD-
0038 bindR. affinis ACE2s, and the K493Y/T498W double mutant con-
fers human ACE2 binding to the PRD-0038 RBD as it does for BtKY72.
Last, theuniquely branching RsYNO4 RBD binds to R. affinis 787 ACE2
(Fig.4d), aswas recently shown for the closely related RaTG15 spike®.
The RsYNO4 RBD can also acquire binding to human ACE2 through
the single T498W mutation. Incorporation of newly described sarbe-
covirus sequences into an updated phylogenetic reconstruction of
the AncSarbecovirus RBD sequence reaffirms the conclusion that the
ancestral sarbecovirus binds bat ACE2 and can evolve human ACE2
binding via single amino-acid mutation (Extended DataFig.10). These
resultsillustrate that the ancestral traits of ACE2 binding and ability
to evolve human ACE2 binding are maintained in geographically and
phylogenetically diverse sarbecoviruses, including lineages that are
just beginning to be described™>1%324,

Discussion

Our experimentsreveal that binding tobat ACE2 is an ancestral trait of
sarbecoviruses that is also present in viruses from outside of Asia™>".
Binding to human ACE2 arose in the common ancestor of SARS-CoV-1-
and SARS-CoV-2-related RBDs prior to their divergence, and human
ACE2 binding is evolvable in other phylogenetic clades. Binding to
the ACE2 orthologs we tested was then lost on the branch leading to
the Clade 2 RBDs, which either bind an alternative receptor or ACE2
orthologs not evaluated here. These resultsimply that unsampled RBD
lineagesin the phylogeneticinterval between BtKY72 and SARS-CoV-1/
SARS-CoV-2 likely utilize ACE2 as an entry receptor and are capable
of evolving affinity for human ACE2. Indeed, the Khosta-2 virus from
Russia is an example of a RBD where this evolutionary potential for
human ACE2 binding has been realized.

Our work also shows that ACE2 binding is a highly evolvable trait
of'sarbecovirus RBDs. For every ACE2-binding RBD we studied, there
were single amino-acid mutations that enhanced affinity for ACE2
orthologs a RBD could already bind to or that conferred binding to
new ACE2 orthologs from different species. Host jumps are com-
mon among the wide diversity of bats thatare naturally infected with
these viruses®>*., In addition to frequent exchange of RBDs among
viral backbones via recombination®**, the evolutionary plasticity
of RBD binding to ACE2 islikely a key contributor to the ecological
dynamics of sarbecoviruses, and perhaps other coronaviruses that
likewise frequently transmit across species®. Because the effects
of RBD mutations on ACE2 binding can differ across sarbecovirus
backgrounds, itisnot trivial to predict the ACE2 binding properties
ofagiven RBD solely fromits sequence. Therefore, high-throughput
approaches such as the one we have used here, which enables rapid
and comprehensive measurement of ACE2 binding affinities of RBD
variantsin anon-viral context, can aid efforts to understand the evolu-
tionary diversity and dynamics of sarbecoviruses and develop broadly
protective therapeutics.

Sarbecoviruses are of particular concern as two different strains
have caused human outbreaks. Although humaninfectivity depends on
many factors, the ability to bind human receptor is certainly akey fac-
tor. Our results show that the capacity of sarbecoviruses tobind human
ACE2 is evolvable and has arisen independently in regions outside of
southeast Asia. Our high-throughput yeast-display platform enables
study of possible host tropism of sarbecoviruses without requiring work
with replication-competent viruses that can pose biosafety concerns.
The geographicbreadth of ACE2 binding we describe suggests that care
should be taken in the sampling and study of replication-competent
sarbecoviruses even outside regions like southeast Asia where spillover
potential is considered greatest, and that efforts to develop vaccines
and antibody therapeutics for pandemic preparedness should consider
sarbecoviruses circulating worldwide.
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Methods

Phylogenetics and ancestral sequence reconstruction

All steps of bioinformatic analysis, including specific programmatic
commands, alignments, raw data, and output files can be found on
GitHub: https://github.com/jbloomlab/SARSr-CoV_homolog_survey/
tree/master/RBD_ASR.

Apanel of unique sarbecovirus RBD sequences was assembled incor-
porating the RBD sequences curated by Letko et al.”, all unique RBD
sequences among SARS-CoV-1 human and civet strains reported by
Songetal.*®, and recently reported sarbecoviruses BtKY72'3, RaTG13?,
GD-Pangolin-CoV (consensus RBD sequence reportedin Fig.3a of Lam
et al.”®) and GX-Pangolin-CoV? (P2V, ambiguous nucleotide in codon
515 (SARS-CoV-2 numbering) was resolved to retain amino acid F515,
whichis conserved across all other sarbecoviruses). We also incorpo-
rated newly described sarbecovirus sequences RsYN0O4%, PDF-2370
and PRD-0038", Khosta-1and Khosta-2*2, RhRGBO1*, RshSTT182%, and
Rc-0319* into updated phylogenies and functional work after the initia-
tion of our study (Fig. 4 and Extended Data Fig. 10). The Hibecovirus
sequence Hp-BetaCoV/Zhejiang2013 (Genbank: KF636752) was used
toroot the sarbecovirus phylogeny. For Extended Data Fig.1and 10a-d,
additional betacoronavirus outgroups were included in rooting. All
virus names, species and location of sampling, and sequence accessions
or citations are provided on GitHub: https://github.com/jbloomlab/
SARSr-CoV_homolog_survey/blob/master/RBD_ASR/RBD_accessions.
csv. We thank all sequence contributors, including contributors to
GISAID: https://github.com/jbloomlab/SARSr-CoV_homolog_survey/
tree/master/RBD_ASR/gisaid.

Amino acid sequences were aligned by mafft (version 7.471)* witha
gap opening penalty of 4.5. RBD sequences were subsetted from spike
alignments according to our domain boundary defined for SARS-CoV-2
(Wuhan-Hu-1 Genbank: MN908947, residues N331-T531). Nucleotide
alignments were constructed from amino acid alignments using PAL-
2NAL (version 14)*2, Phylogenies were inferred with RAXML (version
8.2.12)* using the LG+T substitution model for amino acid sequence
alignments or GTR+I with separate data partitions applied to thefirst,
second, and third codon positions for nucleotide sequence alignments.
Constraint files specifying specific clade relationships(but free topolo-
gies within clades) were used to fix particular topologies in Extended
DataFig. 6a (alternate relationships between RBD Clades1a,1b,and 2)
andFig.4a (monophyletic Europe and AfricaRBD clade, see Extended
DataFig.10a-d). RBD gene segments were used as our primary bound-
ary for phylogeneticinference and ancestral sequence reconstruction
due to the presence of frequent recombination within broader spike
alignments'?.

Marginal likelihood ancestral sequence reconstruction was per-
formed with FastML (version 3.11)** using the amino acid sequence
alignment, the maximum likelihood nucleotide tree topology from
RAXML, the LG+T substitution matrix, re-optimization of branch
lengths, and FastML'’s likelihood-based indel reconstruction model.
The maximum aposteriori (MAP) ancestral sequences at nodes of inter-
est were determined from the marginal reconstructions as the string
of amino acidsat each alignment site with the highest posterior prob-
ability, censored by deletions as inferred from the indel reconstruction.
Totest the robustness of ancestral phenotypes to statistical uncertainty
inreconstructed ancestral states, we also constructed “alt” ancestors
inwhich all second-most-probable states with posterior probability >
0.2 were introduced simultaneously®.

To identify potential recombination breakpoints within the RBD
alignment, we used GARD (version 0.2)%, which identified a possible
recombination breakpoint (Extended Data Fig. 6¢) that produces two
alignment segments exhibiting phylogenetic incongruence with a
gainin overall likelihood sufficient to justify the duplication of phy-
logenetic parameters (AAIC =-85). To determine the impact of this
possible recombination on ancestral sequence reconstructions, the

alignmentwassplitinto separate segments at the proposed breakpoint.
Phylogenies were inferred and ancestral sequences reconstructed on
separate segments as described above, and reconstructed ancestral
sequences at matched nodes for each segment were concatenated,
asshownin Extended Data Fig. 6e.

RBD library construction

Genes encoding all 73 unique extant and ancestral RBD amino acid
sequences were ordered from Twist Bioscience, Genscript, and IDT.
Genesequences are provided on GitHub: https://github.com/jbloom-
lab/SARSr-CoV_homolog_survey/blob/master/RBD_ASR/parsed_
sequences/RBD_sequence_set_annotated.csv. Genes were cloned in
bulk into the pETcon yeast surface-display vector (plasmid 2649) as
described by Starr et al.2. As described in this prior publication, rand-
omized N16 barcodes were appended via PCR downstream from RBD
coding sequences. RBD sequences were pooled and barcoded in two
independently processed replicates. The pooled, barcoded parental
RBDlibraries were electroporated into E. coliand plated at an estimated
bottleneck of 22,000 cfu, yielding an estimated ~300 barcodes per
parental RBD within each library replicate.

Inparallel, we cloned site saturation mutagenesis libraries of six posi-
tionsinselect RBD backgrounds. The positions targeted correspond to
SARS-CoV-2 positions 455,486,493,494,498,and 501. The RBD-indexed
position targeted in each background is provided on GitHub: https://
github.com/jbloomlab/SARSr-CoV_homolog_survey/blob/master/
RBD_ASR/parsed_sequences/RBD_sequence_set_annotated.csv. Precise
site saturation mutagenesis pools were produced by Genscript, pro-
vided as plasmid libraries. Failed positions in the Genscript mutagen-
esis libraries (all six positions in SARS-CoV-1Urbani, position 494 in
SARS-CoV-2, and position 455 in RaTG13 and GD-Pangolin) or back-
grounds chosen for mutagenesis subsequent to initial library design
(BtKY72) were produced in-house via PCR-based mutagenesis using
NNS degenerate mutagenic primers followed by Gibson Assembly of
mutagenized fragments. In duplicate, mutant libraries were pooled
and N16 barcodes were appended downstream from the RBD coding
sequence. The pooled, barcoded mutant libraries were electroporated
into E. coliand plated at atarget bottleneck corresponding to an average
of 20 barcodes per mutant within each library replicate.

Colonies from bottlenecked transformation plates were scraped
and plasmid purified. Parental RBD and mutant pools were combined
at ratios corresponding to expected barcode diversity, yielding the
two separately barcoded library replicates used in high-throughput
experiments. Plasmid libraries were transformed into yeast (AWY101
strain®) according to the protocol of Gietz and Schiestl”, transforming
10 pg of plasmid at 10x scale.

PacBio sequencing and analysis

As described by Starr et al."2, PacBio sequencing was used to acquire
long sequence reads spanning the N16 barcode and RBD coding
sequence. PacBio sequencing constructs were prepared from library
plasmid pools via Notl digestion and gel purification, followed by SMRT-
bellligation. Each library was sequenced across three SMRT Cellsona
PacBio Sequel using 20-hour movie collection times. PacBio circular
consensus sequences (CCSs) were generated from subreads using the
ccsprogram (version 5.0.0), requiring 99.9% accuracy and aminimum
of3 passes. Theresulting CCSs are available on the NCBI Sequence Read
Archive, BioSample SAMN18316101.

CCSswere processed using alignparse (version 0.1.6)** toidentify the
RBD target sequence, callany mutations, and determine the associated
N16 barcode sequence, requiring nomore than 18 nucleotide mutations
fromtheintended target sequence, an expected 16-ntlength barcode
sequence, and no more than 3 mismatches across the sequenced por-
tions of the vector backbone.

We next used processed CCSs to link each barcode to the associ-
ated RBD sequence. We first filtered sequences with ccs-determined
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accuracies of <99.99% or indels. The empirical sequencing accu-
racy estimated by comparing RBD variants associated with barcode
sequences sampled across multiple CCSs (https://jbloomlab.github.io/
alignparse/alignparse.consensus.html#alignparse.consensus.empiri-
cal_accuracy) was 99.0% and 98.4%in libraries1and 2, respectively. For
barcodes sampled across multiple CCSs, we derived consensus RBD
variant sequences, discarding barcodes where CCSs withidentical bar-
codes exhibited >1 point mutation or >2 indels, or where >10% or >25%
of CCSs with anidentical barcode contain asecondary non-consensus
mutation or indel, respectively. The CCS processing pipeline is avail-
able on GitHub: https://github.com/jbloomlab/SARSr-CoV_homolog_
survey/blob/master/results/summary/process_ccs.md. The final
barcode-variant lookup table, which links each N16 barcode with its
associated RBD sequence, is available on GitHub: https://github.com/
jbloomlab/SARSr-CoV_homolog_survey/blob/master/results/variants/
nucleotide _variant_table.csv.

ACE2 proteins for yeast-display assays

Recombinant dimeric ACE2 proteins for yeast-display binding assays
were purchased or produced from commercial sources. Recombinant
human ACE2 (Uniprot: Q9BYF1-1) was purchased from ACROBiosys-
tems (AC2-H82E6), consisting of residues 18-740 spanning an intrinsic
dimerization domain, followed by a His tag and biotinylated Avitag
used for downstream detection. Civet (Paguma larvata) ACE2 (Uniprot:
Q56NL1-1) was purchased from ACROBiosystems (AC2-P5248), con-
sisting of residues 18-740 spanning an intrinsic dimerization domain,
with an N-terminal His tag used for downstream detection. Mouse
(Mus musculus) ACE2 (Uniprot: Q8R0I0-1) was purchased from Sino
Biological (50249-MO03H), consisting of residues 18-740 spanning an
intrinsic dimerization domain, followed by a His tag and human IgG1
Fc domain used for downstream detection.

The remaining ACE2s for yeast-display binding assays (with the
exception of Extended Data Fig. 4) were produced by Genscript. Spe-
cifically, pangolin (Manisjavanica, Genbank: XP_017505746.1), R. affinis
787 (Genbank: QMQ39222), R. affinis 9479 (Genbank: QMQ39227),
R. sinicus 3364 (Genbank: QMQ39219), and R. sinicus 1434 (Genbank:
QMQ39216) ACE2 residues19-615 were cloned with a C-terminal human
IgG1Fcdomain for dimerization and downstream detection. pcDNA3.4
expression plasmids were transfected into HD 293F cells for protein
expression. ACE2-Fc fusions were purified from day six culture super-
natants via Fc-tag affinity purification.

Library measurements of RBD expression and RBD+ enrichment
Transformed yeast library aliquots were grown overnightin ashaker at
30°CinSD-CAAmedia (6.7 g/L Yeast Nitrogen Base, 5.0 g/L Casamino
acids, 2.13g/L MES, and 2% w/v dextrose, pH5.3). Toinduce RBD expres-
sion, yeast were washed and resuspended in SG-CAA+0.1%D media
(6.7 g/L Yeast Nitrogen Base, 5.0 g/L Casamino acids, 2.13 g/L MES, 2%
w/v galactose, and 0.1% w/v dextrose, pH 5.3) at initial OD600 0.67,
and incubated at room temperature for 16-18 hr with mild agitation.

For each library, 45 OD of induced culture was washed twice with
PBS-BSA (0.2 mg/mL),and RBD surface expression was labeled via
a C-terminal c-Myc tag with 1:100 diluted FITC-conjugated chicken
anti-c-Myc antibody (Immunology Consultants Lab, CMYC-45F) in 3mL
PBS-BSA. Labeled cells were washed twicein PBS-BSA, and resuspended
in PBS for FACS.

Yeast library sorting experiments were conducted on a BD FACSAria
Il with FACSDiva software (version 8.0.2). For high-throughput meas-
urements of RBD expression levels, cells were gated for single cells
(Extended Data Fig. 2b), and partitioned into four bins of FITC fluores-
cence (Extended Data Fig. 2c), where bin 1 captures 99% of unstained
cells, and bins 2-4 split the remaining library populationinto tertiles.
Cells were sorted into SmL tubes pre-wet with ImL of SD-CAA with
1% BSA. We recovered ~8 million cells per library across the four bins.
Sorted cells were resuspended to 2e6 cells/mL in fresh SD-CAA with

1:100 penicillin-streptomycin, and grown overnight at 30 °C. Plasmid was
purified from post-sort yeast samples of <4e7 cells per miniprep column
using the Zymo Yeast Miniprep I kit (D2004) according to manufacturer
instructions, with the addition of an extended (>2 hr) Zymolyase treat-
mentanda-80 °Cfreeze/thaw cycle prior to cell lysis. N16 barcodes were
PCR amplified from each plasmid aliquot asdescribed in Starretal.?and
submitted for Illumina HiSeq 50bp single end sequencing.

To enrich properly expressing RBD variants for downstream titra-
tion experiments, we also sorted -2e7 cells per library using the RBD+
(FITC+) bin shown in Extended Data Fig. 2b). RBD+-enriched popula-
tions were resuspended to 1e6 cells/mL for overnight outgrowth, and
frozen-80 °Cin9 OD aliquots for subsequent titration experiments.

Apool of mutants that were added after the first set of experiments
(mutations at position 455in RaTG13 and GD-Pangolin,and mutations
atallsix positionsin BtKY72) were not RBD+enriched and were not part
of the bulk expression Sort-seq measurement, but were pooled with
the RBD+-enriched population of the primary libraries for subsequent
titration assays.

Library measurements of ACE2 binding affinities

For high-throughput measurements of ACE2 binding affinities, yeast
libraries were induced for RBD expression as described above. Induced
cultures were aliquoted at 8 OD per titration sample and washed twice
with PBS-BSA. Cells were resuspended across a range of ACE2 con-
centrations fromle-6 tole-13Min1M intervals, plusa O M ACE2 con-
centration. Samples were incubated overnight at room temperature
with mild agitation. Samples were washed twice in ice-cold PBS-BSA,
and resuspended in ImL secondary label (1:100 Myc-FITC, and 1:200
PE-conjugated streptavidin (Thermo Fisher S866) for human ACE2,
1:200 iFluor647-conjugated mouse anti-His (Genscript A01802) for
civet ACE2, and 1:200 PE-conjugated goat anti-human IgG (Jackson
ImmunoResearch Labs 109-115-098) for all other Fc-tagged ACE2
ligands), and incubated for 1houronice. Cells were washed twice with
PBS-BSA and resuspended in PBS for FACS.

Titration samples were binned for single, RBD-expressing cells
(Extended Data Fig. 2b), which were then partitioned into four
bins on the basis of ACE2 binding (Extended Data Fig. 2d). At each
concentration, a minimum of 5e6 cells were collected across the
four bins. Sorted cells were resuspended in ImL SD-CAA with 1:100
penicillin-streptomycin, and grown overnight at 30 °C in deep well
plates. Plasmid aliquots from each population were purified with the
Zymo Yeast 96-Well Miniprep kit (D2005) according to manufacturer
instructions, with the addition of an extended (>2 hr) Zymolyase treat-
ment and a-80 °C freeze/thaw cycle prior to cell lysis. N16 barcodes
were PCR amplified from each plasmid aliquot as described in Starr
etal.?and submitted for Illumina HiSeq 50bp single end sequencing.

For the pool of mutants that were added after the first set of experi-
ments (mutations at position 455in RaTG13 and GD-Pangolin, and muta-
tions at all six positions in BtKY72), duplicate titrations were already
conducted with the primary pool for human ACE2 and R. affinis 787
ACE2. Titrations with this smaller library sub-pool with these ACE2
ligands were conducted as above, but scaled to 1.6 OD per sample,
collecting >1 million cells per concentration.

Illumina barcode sequencing analysis

Demultiplexed sequence reads (available on the NCBI Sequence Read
Archive, BioSample SAMN20174027) were aligned to library barcodes as
determined from PacBio sequencing using dms_variants (version 0.8.5),
yielding a count of the number of times each barcode was sequenced
within each FACS bin. Read counts within each FACS bin were down-
weighted by the ratio of total reads from a bin compared to the num-
ber of cells that were actually sorted into that bin. The table giving
downweighted counts of eachbarcodeineach FACS binis available on
GitHub: https://github.com/jbloomlab/SARSr-CoV_homolog_survey/
blob/master/results/counts/variant_counts.csv.


https://jbloomlab.github.io/alignparse/alignparse.consensus.html#alignparse.consensus.empirical_accuracy
https://jbloomlab.github.io/alignparse/alignparse.consensus.html#alignparse.consensus.empirical_accuracy
https://jbloomlab.github.io/alignparse/alignparse.consensus.html#alignparse.consensus.empirical_accuracy
https://github.com/jbloomlab/SARSr-CoV_homolog_survey/blob/master/results/summary/process_ccs.md
https://github.com/jbloomlab/SARSr-CoV_homolog_survey/blob/master/results/summary/process_ccs.md
https://github.com/jbloomlab/SARSr-CoV_homolog_survey/blob/master/results/variants/nucleotide_variant_table.csv
https://github.com/jbloomlab/SARSr-CoV_homolog_survey/blob/master/results/variants/nucleotide_variant_table.csv
https://github.com/jbloomlab/SARSr-CoV_homolog_survey/blob/master/results/variants/nucleotide_variant_table.csv
https://github.com/jbloomlab/SARSr-CoV_homolog_survey/blob/master/results/counts/variant_counts.csv
https://github.com/jbloomlab/SARSr-CoV_homolog_survey/blob/master/results/counts/variant_counts.csv

We estimated the RBD expression level of each barcoded variant
based on its distribution of counts across FACS bins and the known
log-transformed fluorescence boundaries of each sort bin using a maxi-
mum likelihood approach'*, implemented with the fitdistrplus pack-
age (version1.0.14)*°in R. Expression measurements were retained for
barcodes for which greater than 20 counts were observed across the
four FACS bins. The full pipeline for computing per-barcode expres-
sion values is described on GitHub: https://github.com/jbloomlab/
SARSr-CoV_homolog_survey/blob/master/results/summary/com-
pute_expression_meanF.md.

We estimated the level of ACE2 binding of each barcoded variant at
eachtitration concentration based onits distribution of counts across
FACSbins calculated as asimple mean*, as described in Starr et al.'>. We
determined the apparentbinding constant K, ., describing the affinity
of each barcoded variant for each ACE2 along with free parameters a
(titration response range) and b (titration curve baseline) via nonlin-
ear least-squares regression using the standard non-cooperative Hill
equationrelatingthe meanbinresponse variable to the ACE2 labeling
concentration:

bin=a x [ACE2J/(ACE2] + Ky, 1) + b

The measured mean bin value at a given ACE2 concentration was
excluded fromavariant’s curve fitif fewer than 10 counts were observed
across the four FACS bins at that concentration. Individual concentra-
tion points were also excluded from the curve fitif they demonstrated
evidence of bimodality (>40% of counts of abarcode were foundineach
of two non-consecutive bins1+3 or 2+4, or >20% of counts of abarcode
were found in each of the boundary bins 1+4). To avoid errant fits, we
constrained the fit baseline parameter b to be between1and 1.5, the
response parameter atobebetween2and3,and the K, ,,, parameter to
bebetweenle-15andle-5. Thefit forabarcoded variant was discarded
iftheaverage countacross all sample concentrations was below 10, or
if>20% of sample concentrations were missing due to counts below 10.
Wealso discarded curve fits where the normalized mean square residual
(residuals normalized from O to 1 relative to the fit response param-
eter a) is >10x the median normalized mean square residual across all
titrations with all ACE2s. K, ,,, binding constants were expressed as
-10g,0(Kp .pp), Where higher valuesindicate higher affinity binding. The
full pipeline for computing per-barcode binding affinitiesis described
on GitHub: https://github.com/jbloomlab/SARSr-CoV_homolog sur-
vey/blob/master/results/summary/compute_binding Kd.md.

To derive our final measurements we collapsed measurements across
internally replicated barcodes representing each RBD genotype. For
each RBD genotype, we discarded the top and bottom 5% (expression
measurements) or 2.5% (titration affinities) of per-barcode measure-
ments, and computed the mean valueacross remaining barcodes within
each library. The correlations in these barcode-averaged measure-
ments between independently barcoded and assayed library repli-
cates are shown in Extended Data Fig. 2g. Final measurements were
determined as the mean of the barcode-collapsed mean measurements
fromeachreplicate. Thetotal number of barcodes collapsedinto these
final measurements frombothreplicates are shownin the histograms
in Extended Data Fig. 2f. Final measurements for an RBD genotype
were discardedif the RBD genotype was not sampled with at least one
non-filtered barcode in each replicate, or sampled with at least five
non-filtered barcodesinasinglereplicate. The full pipeline for barcode
collapsing is described on GitHub: https://github.com/jbloomlab/
SARSr-CoV_homolog_survey/blob/master/results/summary/barcode_
to_genotype_phenotypes.md. The final processed measurements of
expression and ACE2 binding for parental and mutant RBDs can be
found on GitHub: https://github.com/jbloomlab/SARSr-CoV_homolog_
survey/blob/master/results/final_variant_scores/wt_variant_scores.csv
and https://github.com/jbloomlab/SARSr-CoV_homolog_survey/blob/
master/results/final_variant_scores/mut_variant_scores.csv.

Isogenic ACE2 binding assays

For RBDs assayed subsequent to library experiments (Fig. 4 and
Extended Data Fig. 4, 6f,10e), RBDs were cloned as isogenic stocks
into the 2649 plasmid, sequence verified, and transformed individually
into yeast using the LiAc/ssDNA transformation method®'. Cultures
wereinduced for RBD expression and labeled across ACE2 concentra-
tion series as described above, in V-bottom 96-well plates with 0.067
OD yeast per well. ACE2 labeling of RBD+ cells was measured on a BD
LSRFortessa X50 flow cytometer and data was processed via FlowJo
(version10). Binding curves of PE (ACE2) mean fluorescence intensity
versus ACE2 labeling concentration was fit as above, with the inclusion
of a hill coefficient slope parameter n.

Transient expression of R. affinis and R. sinicus ACE2-Fc

The R. affinis 787 (GenBank: QMQ39222.1), R. affinis 9479 (Gen-
Bank: QMQ39227.1), R. sinicus 1446 (GenBank: QMQ39213.1), R. sini-
cus WJ1 (GenBank: QMQ39206.1), R. sinicus GQ262791 (GenBank:
ACT66275.1), R. sinicus 3364 (GenBank: QMQ39219.1), R. sinicus W)4
(GenBank: QMQ39200.1), R. sinicus 1438 (GenBank: QMQ39203.1),
R.sinicus1434 (GenBank: QMQ39216.1), and R. sinicus 3358 (GenBank:
QMQ39212.1) ACE2 ectodomains constructs were synthesized by Gen-
Script and placed into apCMV plasmid. The domain boundaries for
the ectodomain are residues 19-615. The native signal tag was identi-
fied using SignalP-5.0 (residues 1-18) and replaced with a N-terminal
mu-phosphatase signal peptide. These constructs were then fused to
asequence encodingthrombin cleavage site and ahuman Fc fragment
at the C-terminus. All ACE2-Fc constructs were produced in Expi293F
cells (Thermo Fisher A14527) in Gibco Expi293 Expression Medium at
37 °Cin a humidified 8% CO2 incubator rotating at 130 rpm. The cul-
tureswere transfected using PEI-25K (Polyscience) with cells grown to
adensity of 3 million cells per mL and cultivated for 4-5 days. Proteins
were purified from clarified supernatants using al mL HiTrap Protein
AHP affinity column (Cytiva), concentrated and flash frozenin 1x PBS,
pH7.4 (10 mMNa,HPO,,1.8 MM KH,PO,, 2.7 mMKCI,137 mM NacCl). Cell
lines were not authenticated or tested for mycoplasma contamination.

Transient expression of BtKY72 parental and mutant RBDs
BtKY72RBD construct (BtKY72 S residues 318-520) was synthesized by
GenScriptintoa CMVR plasmid with a N-terminal mu-phosphatase sig-
nal peptide and a C-terminal hexa-histidine tag (HHHHHHHH) joined
by ashort linker (-GGSS) to a Avi tag (-GLNDIFEAQKIEWHE). BtKY72
mutant constructs T498W (BtKY72 S residue 487) and K493Y/T498W
(BtKY72 S residue 482/487) were subcloned by GenScript from the
BtKY72 RBD construct. BtKY72 and BtKY72 mutant RBD constructs
were produced in Expi293F cells in Gibco Expi293 Expression Medium
at 37 °Cin a humidified 8% CO2 incubator rotating at 130 rpm. The
cultures were transfected using PEI-25K with cells grown to a density
of 3 million cells per mL and cultivated for 3-5 days. Proteins were puri-
fied from clarified supernatants using a ImL HisTrap HP affinity col-
umn (Cytiva), concentrated, and then biotinylated witha commercial
BirAKkit (Avidity). Proteins were then purified from the BirA enzyme by
affinity purification using a1 mL HisTrap HP affinity column (Cytiva),
concentrated, and flash frozen in 1x PBS, pH 7.4. Cell lines were not
authenticated or tested for mycoplasma contamination.

Biolayer interferometry

Assays were performed onan Octet Red (Forte Bio) instrument at 30 °C
with shaking at 1,000 RPM. Streptavidin biosensors were hydrated
in water for 10 min prior to a 60 s incubation in 10x Kinetics Buffer
(undiluted). Biotinylated RBDs were loaded at 5-10 pg/mLin10s Kinet-
ics Buffer for 100-600 s prior to baseline equilibration for 120 sin 10x
kinetics buffer. Association of ACE2-Fc (dimeric) was performed at 1pM
in10x Kinetics Buffer. The data were baseline subtracted. The experi-
ments were done with three separate purification batches of BtKY72
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RBDs. AlIRBDs wereimmobilized toidentical levels, i.e. 1nmshift. The
datawere plotted in Graph Prism and a representative plot is shown.

Generation of VSV pseudovirus

The BtKY72 S construct was synthesized by GenScript and cloned into
an HDM plasmid with a C-terminal 3X FLAG tag. The BtKY72 mutant S
constructs T498W (BtKY72 Sresidue 487) and K493Y/T498W (BtKY72
Sresidue 482/487) were subcloned by GenScript from the BtKY72 S
construct. Pseudotyped VSV particles were prepared using HEK293T
(293T) (ATCC CRL-11268) cells seeded into 10-cm dishes. 293T cells
were transfected using Lipofectamine 2000 (Life Technologies) with
a S encoding-plasmid in Opti-MEM transfection medium and incu-
bated for 5hrat37 °Cwith 8% CO, supplemented with DMEM contain-
ing 10% FBS. One day post-transfection, cells were infected with VSV
(G*AG-luciferase), and after 2 hr, infected cells were washed 5x with
DMEM before adding medium supplemented with anti-VSV G antibody
(I1-mouse hybridomasupernatant diluted 1:40, from ATCC CRL-2700).
Pseudotyped particles were harvested 18-24 hr post-inoculation, clari-
fied from cellular debris by centrifugation at 3000 g for 10 min, concen-
trated 100x usinga100 MWCO membrane for 10 minat3000 rpm, and
frozen at -80 °C. Mock pseudotyped VSV pseudovirus was generated
as above but in the absence of S. Cell lines were not authenticated or
tested for mycoplasma contamination.

VSV pseudovirus entry assays
HEK293T (293T) cells (ATCC CRL-11268) and 293T cells with stable
transfection of human ACE2%? were cultured in 10% FBS, 1% PenStrep
DMEM at 37 °C in a humidified 8% CO2 incubator. Cells were plated
into poly-lysine coated 96-well plates. For R. affinis ACE2 entry, tran-
sient transfection of R. affinis ACE2in293T cells was done 36-48 hours
prior to infection using Lipofectamine 2000 (Life Technologies) and
an HDM plasmid containing full length R. affinis ACE2 (synthesized
by GenScript) in OPTIMEM. After 5 hr incubation at 37 °C in a humidi-
fied 8% CO2 incubator, DMEM with 10% FBS was added and cells were
incubated at 37 °Cina humidified 8% CO2 incubator for 36-48 hr. Cell
lines were not authenticated or tested for mycoplasma contamination.
Immediately prior toinfection, 293T cells with stable expression of
human ACE2, transient expression of R. affinis ACE2 or not transduced
to express ACE2 were washed with DMEM 1x, then plated with normal-
ized pseudovirus in DMEM. Infection in DMEM was done with cells
between 60-80% confluence (human ACE2 293T) or between 80-90%
confluence (R. affinis ACE2 293T) for 2.5 hr prior toadding FBS and
PenStrep to final concentrations of 10% and 1%, respectively. Follow-
ing 24 hr of infection, One-Glo-EX (Promega) was added to the cells
and incubated in the dark for 5 min before reading on a Synergy H1
Hybrid Multi-Mode plate reader (Biotek). Normalized cell entry levels
of pseudovirus generated on different days (biological replicates) were
plotted in Graph Prism as individual points, and average cell entry
across biological replicates was calculated as the geometric mean.
BtKY72 S parental and mutant pseudoviral particle inputs for the
above cell entry assays were normalized by spike incorporation quan-
tified via western blot. Detection of S was done with mouse mono-
clonal ANTI-FLAG M2 antibody (Sigma F3165) and Alexa Fluor 680
AffiniPure Goat Anti-Mouse IgG, light chain specific (Jackson Immu-
noResearchLabs115-625-174). Detection of the VSV backbone was done
with Anti-VSV-M [23H12] Antibody (Kerafast EBOO11) and Alexa Fluor
680 AffiniPure Goat Anti-Mouse IgG, light chain specific (Jackson
ImmunoResearch Labs 115-625-174). Arepresentative blot is shownin
Extended DataFig. 3c. Expression of the R. affinis ACE2 alleles was not
quantified or normalized.

Biosafety considerations

We characterize the human ACE2 binding of sarbecovirus RBDs and
identify point mutants that increase the affinity of some RBDs. This
workincludes identifying sarbecovirus RBDs from outside southeast

Asia that can naturally bind human ACE2 (Khosta-2 RBD from Rus-
sia) or adapt to bind human ACE2 with just a few mutations (BtKY72
RBD from Kenya). We verify this latter finding using non-replicative
spike-pseudotyped VSV particles. None of our experiments pose
a biosafety risk, since they only involve RBD protein (purified or
expressed in yeast) or non-replicative pseudotyped VSV viral parti-
cles,and not “live virus.” However, it is possible that another researcher
could perform experiments on actual sarbecoviruses with RBDs like
the ones we describe, and such experiments could pose arisk. Against
that possible information misuse, we weigh the following benefits of’
theinformation conveyed by our study: (i) as stated in the concluding
paragraph of the Discussion, we use safe methods to highlight the need
for care when sampling sarbecoviruses including those from outside
southeast Asia; (ii) we identify a broader swath of spike proteins that
should be included in biochemical studies to engineer countermeas-
ures (e.g., broad antibodies®*** or stabilized spike immunogens); (iii)
we characterize mutations that could enable safer mouse-adapted lab
strains with reduced human ACE2 affinity (Extended Data Figure 8c);
(iv) we provide data that can improve sequence-based phenotypic
predictions. We emphasize that our work indicates that “live virus”
experiments with any novel sarbecovirus should involve careful con-
sideration of risks, since human ACE2 binding may be widespread.
The actual capability of a sarbecovirus to infect humans will depend
not only on its ACE2 affinity, but also other properties including pro-
teolytic activation of the spike®, innate immunity, and other poorly
understood factors.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

PacBio circular consensus sequences are available from the NCBISRA,
BioSample SAMN18316101. lllumina sequences for barcode counting
are available fromthe NCBISRA, BioSample SAMN20174027. Table of
measurements of ACE2 binding and expression for all parental RBDs
is available on GitHub: https://github.com/jbloomlab/SARSr-CoV_
homolog_survey/blob/master/results/final_variant_scores/wt_variant_
scores.csv. Tableof measurements of ACE2 binding and expression forall
single mutant RBDs is available on GitHub: https://github.com/jbloom-
lab/SARSr-CoV_homolog_survey/blob/master/results/final_variant_

scores/mut_variant_scores.csv. For bioinformatic analyses, all virus
names, species and location of sampling, and sequence accessions
(NCBI Genbank or GISAID) or citations are tabulated on GitHub: https://
github.com/jbloomlab/SARSr-CoV_homolog_survey/blob/master/

RBD_ASR/RBD _accessions.csv

Code availability

All code for data analysis is available on GitHub: https://github.com/
jbloomlab/SARSr-CoV_homolog_survey.Asummary of the computational
pipeline and links to individual notebooks detailing steps of analysis is
available on Github: https://github.com/jbloomlab/SARSr-CoV_homolog_
survey/blob/master/results/summary/summary.md
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Extended DataFig.1|Robustness of theroot of the sarbecovirusingroup.
To establishrobustness of our conclusion that the first sarbecovirus
divergenceisbetweensarbecoviruses from Africaand Europe and those from
Asia,we inferred phylogenies based onalignments of RBD (SARS-CoV-2 spike
residues N331-T531) (a,b) or the full spike gene (c,d) and nucleotide (a, ¢) or
amino-acid (b, d) alignments and substitution models. In all four cases, the first
sarbecovirus bipartitionis placed between sarbecovirusesin Africa/Europe
and thosein Asia. The placement of the overall tree root is arbitrary with
respect to the relationship among non-sarbecovirus outgroups, but this
arbitrary placement does notimpact the sarbecovirusingrouprooting. The
primary variations amongtreesincludes a potential paraphyletic separation of
BtKY72and BM48-31from Europe and Africasuch that they donotforma

monophyletic clade (b; also seenin Extended Data Fig.10a-c), and variationin
therelationships among the three Asiasarbecovirus clades (whose relationship
isalsoinferred withaverylowbootstrap supportvalueinour primary
phylogenyinFig.1a). Known recombination of RBDs with respect to other spike
segments among viruses createsincongruencies betweenspikeand RBD trees
among Asian sarbecovirus lineages (e.g. ZC45 and ZXC21), though
recombination has not beenreported amongthe Africaand Europe spikes and
thosein Asia. Scale bar, expected number nucleotide or amino-acid
substitutions per site. Node labelsillustrate bootstrap support values for
sarbecovirus and Asia sarbecovirus monophyly. Sequences colored by their
RBDcladeasinFig.1a.
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Extended DataFig. 2| Experimental details of Sort-seq assays.a, RBD
yeast-surface display enables detection of folded RBD expressionand ACE2
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Extended DataFig. 6 | Robustness to uncertaintiesin ancestral
reconstructions. a, We performed ancestral sequence reconstructions on
phylogenies constraining sister relationships between SARS-CoV-2 clade and
Clade 2 (treel) or SARS-CoV-1and SARS-CoV-2 clades (tree2) due toambiguity in
theserelationships (Fig.1laand Extended Data Fig.1). b, ACE2 binding of
alternative reconstructions. “Alt” ancestorsincorporate all secondary
reconstructed states with posterior probability >0.2%; “treel” and “tree2”
ancestorsareinferred onthe constrained treesin (a); and “ins117-118” tests the
ambiguity of anindel separate from the remaining substitutionsin
AncSarbecovirus_alt. Sequence differences are listed at right relative to the
maximum a posteriori (MAP) ancestors from Fig. 2b and Extended Data Fig. 5b.
Mutations are colored red if they were sufficient to abolish the ancestral
phenotype andblueifthey reinforced it (Extended Data Fig.7). Dramatic
changestoinferred ancestral phenotypes are mostly observed in the alt
ancestors whichare the most probabilistically distant, while the treel and tree2

alternatives generally recapitulate the MAP phenotypes. The exceptionis
AncSARSla, wherethe treeland tree2 alternatives better match what would be
expected based onthe descendent RBD phenotypes (Fig.1b).c, RBD amino
acid alignment, indicating a potential recombination breakpoint identified by
GARD?* (fromunderlying nucleotide sequence). d, Relative support values for
possible recombination breakpoints. e, Phylogeniesinferred for the putative
non-recombinant RBD segments. Arrows point to key changes in the segment 2
sub-tree. Each changeis supported by weak bootstrap support values, and this
hypothesisintroduces anon-parsimonious history with respectto anindel at
position482. Wereconstructed AncSarbecovirus_GARD and AncAsia_GARD as
concatenated segment1and 2 reconstructions. Mutations that distinguish the
GARD and MAP ancestor are listed at bottom. f, Binding of GARD ancestors to
humanandR. affinis 9479 ACE2 was determined in isogenic yeast-display
titrations.
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Extended DataFig. 8| Existing dataonsarbecovirusesinmice, and
affinities of RBDs and key mutants for mouse versus human ACE2.

a, Summary of infectivity and pathogenesis of natural sarbecovirus and
mouse-adapted strains from prior studies®**+¢"70 b, High-throughput
titration curves for relevant genotypes from (a). Details as in Fig. 1d. Strength
of binding to mouse ACE2 explains the infectivity and pathogenesis of SARS-
CoV-1Urbaniand RsSHCO014%"*, relative to the weak or absent replication of
WIV1**and SARS-CoV-2*2in mice. Mutagenesis data explain the inefficient
mouse infectivity of the SARS-CoV-2 B.1.1.7 isolate’ which incorporates the
N501Y RBD mutation, relative to the efficient replication of the mouse-adapted

SARS-CoV-2isolate containing Q498Y*? or the pathogenic WBP-1strain
containing Q493K and Q498H®. ¢, Anideal mouse-adapted laboratory
sarbecovirus strain would bind mouse ACE2 but not human ACE2 due to
biosafety considerations. The large red pointsindicate the affinity of the
parental RBD for humanand mouse ACE2. The smaller black pointsindicate
mutations, and key mutations that enhance binding to mouse versus human
ACE2arelabeled (using SARS-CoV-2 numbering). Further mouse ACE2
specificity may be enabled via mutations at other positions not surveyed in our
set of six positions.
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Extended DataFig. 9 | Epistasis and turnover in mutational effects.

a, Example correlations in binding affinities for mutantsin distinct RBD
backgrounds at eachsite for human ACE2. Plotsillustrate mutant avidities for
human ACE2 and mean absolute error (residual) in the correlation for mutation
measurements in GD-Pangolin (top) and SARS-CoV-1Urbani (bottom) versus

SARS-CoV-2. Plotting symbols indicate amino acid for each measurement.

b, Epistatic turnover in mutational effects across RBD backgrounds. Details as
inFig.3g, butincorporating mutation effects among RBD pairs across all tested
ACE2s.Blueline and shaded gray, LOESS mean and 95% Cl trendline. See
Extended DataFig. 9b for analysis across all ACE2 orthologs.
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Extended DataFig.10 |Robustness of rooting and AncSarbecovirus
phenotypeinaphylogenyincorporating newly reported sequences.

a-d, Phylogeneticinference withinclusion of newly reported sarbecovirus
sequences (Fig.4a). Asin Extended DataFig.1, we infer phylogenies with RBD
(a,b) and full spike alignments (c,d), both on nucleotide sequences (a,c) and
translated amino acid (b,d) sequence alignments. The full set of outgroup
betacoronavirussequences shownin Extended DataFig.1were alsoincludedin
thistreeinference but truncated from the display for visual clarity. The
phylogeny in Fig.4aisaconstrained version of the RBD nucleotide tree from
(a) where we constrained amonophyletic relationship among Africa/Europe
sarbecoviruses due to uncertainty in the exact placement of the root within or

relative ot the Africa/Europe sarbecovirus clade. e, ACE2 binding by parental
RBD and candidate mutantsinanupdated AncSarbecovirus sequence (“v2”)
inferred from the phylogeny in Fig. 4a thatincorporates many newly described
sarbecovirus RBDs, including someinimportant new phylogeneticlocations.
Theunconstrained treein (a) leads to inference of an AncSarbecovirus
sequence thatisidentical to Khosta-2 (which also binds ACE2). Sequence
differences between the original MAP AncSarbecovirus and the “v2”
reconstructionarelisted at top. Measurements performed with
yeast-displayed RBDs and purified dimeric ACE2 proteins, measured by flow
cytometry. Datafrom asingle experimental replicate.
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* PacBio circular consensus sequences are available from the NCBI SRA, BioSample SAMN 18316101

* Illumina sequences for barcode counting are available from the NCBI SRA, BioSample SAMN20174027

* Table of measurements of ACE2 binding and expression for all parental RBDs is available on GitHub: https://github.com/jbloomlab/SARSr-CoV_homolog_survey/
blob/master/results/final_variant_scores/wt_variant_scores.csv

* Table of measurements of ACE2 binding and expression for all single mutant RBDs is available on GitHub: https://github.com/jbloomlab/SARSr-
CoV_homolog_survey/blob/master/results/final_variant_scores/mut_variant_scores.csv

* All virus names, species and location of sampling, and sequence accessions (GenBank, GISAID) or citations are provided on GitHub: https://github.com/jbloomlab/
SARSr-CoV_homolog_survey/blob/master/RBD_ASR/RBD_accessions.csv.
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Sample size No sample size determination was performed, as we were not performing statistical tests dependent on appropriate sample size
determination

Data exclusions | No data were excluded from analyses

Replication High-throughput titration measurements were replicated with two independently constructed gene libraries (Extended Data Fig. 2g). BLI
binding assays were replicated in three batches of purified protein. Pseudovirus entry assays were replicated with two or three independent
batches of pseudovirus generation. All experimental points are shown for DMS assays and pseudoviral entry assays, showing replication of
results. Representative BLI traces are shown but were replicated, including when replicating under different sample concentrations (Extended
Data Fig. 3a,b).

Randomization  Randomization was not performed. We conducted a standard survey of measurements across a panel of genotypes, which is not a study
design that requires randomization

Blinding Blinding was not performed in our study. High throughput titration experiments are conducted in massively parallel bulk experiments where
there is no identifiability of individual variant genotypes, so blinding is not a relevant experimental attribute.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Antibodies

Antibodies used FITC-conjutaged chicken anti-c-Myc (Immunology Consultants Lab, CYMC-45F); PE-conjugated streptavidin (ThermoFisher S866);
iFluor-647-conjugated mouse anti-His (Genscript A01802); PE-conjugated goat anti-human 1gG (Jackson ImmunoResearch Labs
109-115-098); mouse anti-VSV G (ATCC CRL-2700); Alexa Fluor 680-conjugated AffiniPure goat anti-mouse IgG (Jackson
ImmunoResearch 115-625-174); mouse monoclonal anti-FLAG M2 antibody (Sigma F3165); Anti-VSV-M [23H12] antibody (Kerafast
EBO011)

Validation No validation was performed

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) * Expi293F: ThermoFisher A14527
* HEK293T: ATCC CRL-11268
* HEK293T-ACE2: Crawford, KHD et al. Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike
protein for neutralization asasys. Viruses 12 (2020).
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Authentication Cell lines were not authenticated
Mycoplasma contamination Cell lines were not tested for mycoplasma contamination

Commonly misidentified lines  No commonly misidentified lines were used.
(See ICLAC register)

Flow Cytometry

Plots

Confirm that:
|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

g The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Yeast libraries expressing a library of sarbecovirus RBD variants on the cell surface were induced using standard culture
techniques, as described in the Methods

Instrument Sorting was conducted on a BD FACSAria Il cell sorter. Flow cytometry analysis was conducted on a BD LSRFortessa X50 flow
cytometer.

Software Cell sorting experiments were operated using BD FACSDiva software (v. 8.0.2), and flow cytometry data processed in FlowJo
(v. 10)

Cell population abundance We were not sorting a specific target population, but rather partitioning all cells into encompassing bins on the basis of
expression or ACE2 labeling, for downstream sequencing and reconstruction of per-variant labeling.

Gating strategy Single cells were selected via FSC/SSC, FSC-W/FSC-A, and SSC-W/SSC-A gating. RBD-expressing cells were gated using a FITC/

FSC gate. Single, RBD+ cells were sorted into bins of fluorescence on the basis of unlabeled or labeled control cells expressing
the unmutated SARS-CoV-2 RBD. Representative gating schemes are illustrated in Extended Data Fig. 2b-d.

|Z| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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