Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Perovskite–organic tandem solar cells with indium oxide interconnect

Abstract

Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures1. Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported2,3,4,5. Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells6,7. Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite–organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (Voc) of wide-gap perovskite cells8 and losses introduced by the interconnect between the subcells9,10. Here we demonstrate perovskite–organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high Voc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high Voc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells11, show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite–organic tandems, which outperform the best p–i–n perovskite single junctions12 and are on a par with perovskite–CIGS and all-perovskite multijunctions13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Architecture and properties of the organic subcell.
Fig. 2: Optimized wide-gap perovskite subcell.
Fig. 3: Tandem interconnect.
Fig. 4: Perovskite–organic tandem cells.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    Article  ADS  CAS  Google Scholar 

  2. Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Han, Q. et al. High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells. Science 361, 904–908 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article  ADS  CAS  Google Scholar 

  5. Palmstrom, A. F. et al. Enabling flexible all-perovskite tandem solar cells. Joule 3, 2193–2204 (2019).

    Article  CAS  Google Scholar 

  6. Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

    Article  ADS  CAS  Google Scholar 

  7. Liu, Q. et al. 18% Efficiency organic solar cells. Sci. Bull. 65, 272–275 (2020).

    Article  CAS  Google Scholar 

  8. Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020).

    Article  CAS  Google Scholar 

  9. Li, C., Wang, Y. & Choy, W. C. H. Efficient interconnection in perovskite tandem solar cells. Small Methods 4, 2000093 (2020).

    Article  CAS  Google Scholar 

  10. Chen, X. et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule 4, 1594–1606 (2020).

    Article  CAS  Google Scholar 

  11. Zhan, L. et al. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 13, 635–645 (2020).

    Article  CAS  Google Scholar 

  12. Degani, M. et al. 23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Sci. Adv. 7, 7930 (2021).

    Article  ADS  CAS  Google Scholar 

  13. Al-Ashouri, A. et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12, 3356–3369 (2019).

    Article  CAS  Google Scholar 

  14. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  ADS  CAS  Google Scholar 

  15. Graetzel, M. The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014).

    Article  ADS  CAS  Google Scholar 

  16. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, D. et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3, 1093–1100 (2018).

    Article  ADS  CAS  Google Scholar 

  20. Green, M. A. et al. Solar cell efficiency tables (version 56). Prog. Photovolt. Res. Appl. 28, 629–638 (2020).

    Article  Google Scholar 

  21. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Zhao, J. et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016).

    Article  ADS  CAS  Google Scholar 

  23. Cheng, P., Li, G., Zhan, X. & Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photon. 12, 131–142 (2018).

    Article  ADS  CAS  Google Scholar 

  24. Qian, D. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).

    Article  ADS  CAS  Google Scholar 

  26. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article  CAS  Google Scholar 

  27. Yu, R. et al. Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells. Adv. Mater. 31, 1902302 (2019).

    Article  CAS  Google Scholar 

  28. Zhu, Y. et al. Rational strategy to stabilize an unstable high-efficiency binary nonfullerene organic solar cells with a third component. Adv. Energy Mater. 9, 1900376 (2019).

    Article  CAS  Google Scholar 

  29. Gasparini, N. et al. Exploiting ternary blends for improved photostability in high-efficiency organic solar cells. ACS Energy Lett. 5, 1371–1379 (2020).

    Article  CAS  Google Scholar 

  30. Du, X. et al. Unraveling the microstructure-related device stability for polymer solar cells based on nonfullerene small-molecular acceptors. Adv. Mater. 32, 1908305 (2020).

    Article  CAS  Google Scholar 

  31. Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).

    Article  CAS  Google Scholar 

  32. Peña-Camargo, F. et al. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells. ACS Energy Lett. 5, 2728–2736 (2020).

    Article  CAS  Google Scholar 

  33. Stolterfoht, M. et al. Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy Environ. Sci. 10, 1530–1539 (2017).

    Article  CAS  Google Scholar 

  34. Knight, A. J. & Herz, L. M. Preventing phase segregation in mixed-halide perovskites: a perspective. Energy Environ. Sci. 13, 2024–2046 (2020).

    Article  CAS  Google Scholar 

  35. Park, B.-W. et al. Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat. Commun. 9, 3301 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  ADS  CAS  Google Scholar 

  37. Doung, T. et al. High efficiency perovskite-silicon tandem solar cells: effect of surface coating versus bulk incorporation of 2D perovskite. Adv. Energy Mater. 10, 1903553 (2020).

    Article  CAS  Google Scholar 

  38. Brinkmann, K. O. et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nat. Commun. 8, 13938 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Behrendt, A. et al. Highly robust transparent and conductive gas diffusion barriers based on tin oxide. Adv. Mater. 27, 5961–5967 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Gahlmann, T. et al. Impermeable charge transport layers enable aqueous processing on top of perovskite solar cells. Adv. Energy Mater. 10, 1903897 (2020).

    Article  CAS  Google Scholar 

  41. Gu, S. et al. Tin and mixed lead–tin halide perovskite solar cells: progress and their application in tandem solar cells. Adv. Mater. 32, 1907392 (2020).

    Article  CAS  Google Scholar 

  42. Zhang, S. & Scheu, C. Evaluation of EELS spectrum imaging data by spectral components and factors from multivariate analysis. Microscopy 67, 133–141 (2018).

    Article  CAS  Google Scholar 

  43. Becker, T. et al. All-oxide MoOx/SnOx charge recombination interconnects for inverted organic tandem solar cells. Adv. Energy Mater. 8, 1702533 (2018).

    Article  ADS  CAS  Google Scholar 

  44. Meyer, J. et al. Transition metal oxides for organic electronics: energetics, device physics and applications. Adv. Mater. 24, 5408–5427 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Hagleitner, D. R. et al. Bulk and surface characterization of In2O3(001) single crystals. Phys. Rev. B 85, 115441 (2012).

    Article  ADS  CAS  Google Scholar 

  46. Lany, A. et al. Surface origin of high conductivities in undoped In2O3 thin films. Phys. Rev. Lett. 108, 016802 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Bellingham, J. R., Phillips, W. A. & Adkins, C. J. Intrinsic performance limits in transparent conducting oxides. J. Mater. Sci. Lett. 11, 263–265 (1992).

    Article  CAS  Google Scholar 

  48. Hoffmann, L. et al. Spatial atmospheric pressure atomic layer deposition of tin oxide as an impermeable electron extraction layer for perovskite solar cells with enhanced thermal stability. ACS Appl. Mater. Interfaces 10, 6006–6013 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Brinkmann, K. O. et al. The optical origin of near-unity external quantum efficiencies in perovskite solar cells. Sol. RRL 9, 2100371 (2021).

    Article  CAS  Google Scholar 

  50. Brinkmann, K. O. et al. Extremely robust gas-quenching deposition of halide perovskites on top of hydrophobic hole transport materials for inverted (p–i–n) solar cells by targeting the precursor wetting issue. ACS Appl. Mater. Interfaces 11, 40172–40179 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Libera, J. A., Hryn, J. N. & Elam, J. W. Indium oxide atomic layer deposition facilitated by the synergy between oxygen and water. Chem. Mater. 23, 2150–2158 (2011).

    Article  CAS  Google Scholar 

  52. Zardetto, V. et al. Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustain. Energy Fuels 1, 30–55 (2017).

    Article  CAS  Google Scholar 

  53. Wei, W. & Hu, Y. W. Catalytic role of H2O in degradation of inorganic–organic perovskite (CH3NH3PbI3) in air. Int. J. Energy Res. 41, 1063–1069 (2017).

    Article  CAS  Google Scholar 

  54. Yang, J., Siempelkamp, B. D., Liu, D. & Kelly, L. D. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955–1963 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Timmreck, R. et al. Characterization of tandem organic solar cells. Nat. Photon. 9, 478–479 (2015).

    Article  ADS  CAS  Google Scholar 

  56. Zhang, S. et al. Different photostability of BiVO4 in near-pH-neutral electrolytes. ACS Appl. Energy Mater. 3, 9523–9527 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shiga, M. et al. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization. Ultramicroscopy 170, 43–59 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Wurfel, P. The chemical potential of radiation. J. Phys. C 15, 3967–3985 (1982).

    Article  ADS  Google Scholar 

  59. Würfel P. & Würfel U. Physics of Solar Cells: From Basic Principles to Advanced Concepts (Wiley, 2016).

Download references

Acknowledgements

We acknowledge the Deutsche Forschungsgemeinschaft (DFG) (within the SPP 2196: grant numbers RI 1551/15-1, RI 1551/12-1; individual grant numbers: RI 1551/18-1, RI 1551/4-3, RI 1551/7-2 and HE 2698/7-2), the Bundesministerium für Bildung und Forschung (BMBF) (grant number: 01DP20008) and the Bundesministerium für Wirtschaft und Energie (BMWi) (grant number: ZF4037809DF8) for financial support. The research leading to these results has received partial funding from the European Union’s Horizon 2020 Programme under grant agreement no. 951774 (FOXES). This work was also partially funded by the European Regional Development Fund (ERDF) (grant number: EFRE 0801507), S.O. and C. Koch further thank the SCALUP project. (SOLAR-ERA.NET Cofund 2, id: 32). We thank Mountain Photonics for providing us with a Prizmatix high-power white LED as well as Tesa Germany for providing us with sealing duct tape. We also thank J. Wang and R. Janssen from the Eindhoven University of Technology for their support in verifying some EQE values reported in this work. We thank B. Gault and A. Sturm from the Max-Planck-Institut für Eisenforschung GmbH for help with the FIB and for enabling the STEM measurements. We also thank the ESRF for the admission of X-ray diffraction measurements and gratefully appreciate the support by our local contacts O. Konovalov and M. Jankowski. Finally, we acknowledge J. Hohl-Ebinger from the Fraunhofer ISE CalLab for valuable consultation throughout the certification process.

Author information

Authors and Affiliations

Authors

Contributions

T.R., T.B. and K.O.B. conceived and designed the experiments. S.O. and C. Koch contributed the XPS, UPS and IPES analysis. K.O.B., T.B., F.Z., C. Kreusel, M.G., T.M., C.T. and F.G. performed the experimental work on the solar cells. T.G. and M.T. contributed the metal oxide ALD layers as well as electrical characterization. T.H. did the cross-section SEM measurements. P.C., L.P.-T., D.N. and M.S. designed, conducted and evaluated the PLQY/QFLS studies. A.A.-A. and S.A. provided the expertise in the processing of the self-assembled monolayers. D.H. and K.M. contributed temperature-dependent J–V characterization. L.M., A.H. and F.S. designed and conducted the GIWAXS and L.G. and S.Z. the HAADF-STEM and EDS studies. All authors discussed the results and were involved in the writing.

Corresponding authors

Correspondence to K. O. Brinkmann or T. Riedl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, figures, notes and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brinkmann, K.O., Becker, T., Zimmermann, F. et al. Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 604, 280–286 (2022). https://doi.org/10.1038/s41586-022-04455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04455-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing