Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

UV absorption by silicate cloud precursors in ultra-hot Jupiter WASP-178b

Abstract

Aerosols have been found to be nearly ubiquitous in substellar atmospheres1,2,3. The precise temperature at which these aerosols begin to form in exoplanets has yet to be observationally constrained. Theoretical models and observations of muted spectral features indicate that silicate clouds play an important role in exoplanets between at least 950 and 2,100 K (ref. 4). Some giant planets, however, are thought to be hot enough to avoid condensation altogether5,6. Here we report the near-ultraviolet transmission spectrum of the ultra-hot Jupiter WASP-178b (approximately 2,450 K), which exhibits substantial absorption. Bayesian retrievals indicate the presence of gaseous refractory species containing silicon and magnesium, which are the precursors to condensate clouds at lower temperatures. SiO, in particular, has not previously, to our knowledge, been detected in exoplanets, but the presence of SiO in WASP-178b is consistent with theoretical expectations as the dominant Si-bearing species at high temperatures. These observations allow us to re-interpret previous observations of HAT-P-41b and WASP-121b that did not consider SiO, to suggest that silicate cloud formation begins on exoplanets with equilibrium temperatures between 1,950 and 2,450 K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: WASP-178b NUV-optical transmission spectrum.
Fig. 2: Comparison of NUV-optical transmission spectra.
Fig. 3: Atmospheric structures and condensation curves.

Similar content being viewed by others

Data availability

The raw data from this study, HST Program 16068, is publicly available via the Space Science Telescope Institute’s Mikulski Archive for Space Telescopes (https://archive.stsci.edu/).

Code availability

The raw data was reduced with the available STScI CALWF3 pipeline and spectra were extracted with the public IRAF apall routines. The light curve fitting used custom routines that we opt not to make public due to undocumented intricacies. Model and retrievals were generated using PHOENIX, which is a proprietary code but described in many publications, for example, refs. 66,67.

References

  1. Cushing, M. C. et al. A Spitzer infrared spectrograph spectral sequence of M, L, and T dwarfs. Astrophys. J. 648, 614–628 (2006).

    Article  ADS  CAS  Google Scholar 

  2. Saumon, D. & Marley, M. S. The evolution of L and T dwarfs in color-magnitude diagrams. Astrophys. J. 689, 1327–1344 (2008).

    Article  ADS  Google Scholar 

  3. Burningham, B. et al. Cloud busting: enstatite and quartz clouds in the atmosphere of 2M2224-0158. Mon. Not. R. Astron. Soc. 506, 1944–1961 (2021).

  4. Gao, P. et al. Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nature Astron. 4, 951–956 (2020).

    Article  ADS  Google Scholar 

  5. Lothringer, J. D. et al. An HST/STIS optical transmission spectrum of warm Neptune GJ 436b. Astron. J. 155, 66 (2018).

    Article  ADS  Google Scholar 

  6. Kitzmann, D. et al. The peculiar atmospheric chemistry of KELT-9b. Astrophys. J. 863, 183 (2018).

    Article  ADS  Google Scholar 

  7. Hellier, C. et al. WASP-South hot Jupiters: WASP-178b, WASP-184b, WASP-185b, and WASP-192b. Mon. Not. R. Astron. Soc. 490, 1479–1487 (2019).

    Article  ADS  CAS  Google Scholar 

  8. Rodr´ıguez Mart´ınez, R. et al. KELT-25 b and KELT-26 b: a hot Jupiter and a substellar companion transiting young a stars observed by TESS. Astron. J 160, 111 (2020).

    Article  ADS  Google Scholar 

  9. Matsushima, S. Radiative opacity in stellar atmospheres. II. Effect of ultraviolet continuum on the photospheric radiation field. Astrophys. J. 154, 715 (1968).

    Article  ADS  Google Scholar 

  10. Fontenla, J. M., Stancil, P. C. & Landi, E. Solar spectral irradiance, solar activity, and the near- ultra-violet. Astrophys. J. 809, 157 (2015).

    Article  ADS  Google Scholar 

  11. Sharp, C. M. & Burrows, A. Atomic and molecular opacities for brown dwarf and giant planet atmospheres. Astrophys. J. Supp. 168, 140–166 (2007).

    Article  ADS  CAS  Google Scholar 

  12. Lothringer, J. D., Fu, G., Sing, D. K. & Barman, T. S. UV exoplanet transmission spectral features as probes of metals and rainout. Astrophys. J. Lett. 898, L14 (2020).

    Article  ADS  CAS  Google Scholar 

  13. Hoeijmakers, H. J. et al. Hot exoplanet atmospheres resolved with transit spectroscopy (HEARTS). IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP- 121 b. Astron. Astrophys. 641, A123 (2020).

    Article  CAS  Google Scholar 

  14. Stangret, M. et al. Detection of Fe I and Fe II in the atmosphere of MASCARA-2b using a cross- correlation method. Astron. Astrophys. 638, A26 (2020).

    Article  CAS  Google Scholar 

  15. Ehrenreich, D. et al. Nightside condensation of iron in an ultrahot giant exoplanet. Nature 580, 597–601 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kesseli, A. Y. & Snellen, I. A. G. Confirmation of asymmetric iron absorption in WASP-76b with HARPS. Astrophys. J. Lett. 908, L17 (2021).

    Article  ADS  CAS  Google Scholar 

  17. Sing, D. K. et al. The Hubble Space Telescope PanCET program: exospheric Mg II and Fe II in the near-ultraviolet transmission spectrum of WASP-121b using jitter decorrelation. Astron. J. 158, 91 (2019).

    Article  ADS  CAS  Google Scholar 

  18. Gibson, N. P. et al. Detection of Fe I in the atmosphere of the ultra-hot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy. Mon. Not. R. Astron. Soc. 493, 2215–2228 (2020).

    Article  ADS  CAS  Google Scholar 

  19. Cabot, S. H. C., Madhusudhan, N., Welbanks, L., Piette, A. & Gandhi, S. Detection of neutral atomic species in the ultra-hot Jupiter WASP-121b. Mon. Not. R. Astron. Soc. 494, 363–377 (2020).

    Article  ADS  CAS  Google Scholar 

  20. Hoeijmakers, H. J. et al. A spectral survey of an ultra-hot Jupiter. Detection of metals in the transmission spectrum of KELT-9 b. Astron. Astrophys. 627, A165 (2019).

    Article  CAS  Google Scholar 

  21. Merritt, S. R. et al. An inventory of atomic species in the atmosphere of WASP-121b using UVES high-resolution spectroscopy. Mon. Not. R. Astron. Soc. 506, 3853–3871 (2021).

  22. Wakeford, H. R. et al. Into the UV: a precise transmission spectrum of HAT-P-41b using Hubble’s WFC3/UVIS G280 grism. Astron. J. 159, 204 (2020).

    Article  ADS  Google Scholar 

  23. Visscher, C., Lodders, K. & Fegley, J. B. Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. III. Iron, magnesium, and silicon. Astrophys. J. 716, 1060–1075 (2010).

    Article  ADS  CAS  Google Scholar 

  24. Parmentier, V., Showman, A. P. & Fortney, J. J. The cloudy shape of hot Jupiter thermal phase curves. Mon. Not. R. Astron. Soc. 501, 78–108 (2021).

    Article  ADS  Google Scholar 

  25. Roman, M. T. et al. Clouds in three-dimensional models of hot Jupiters over a wide range of temperatures. I. Thermal structures and broadband phase-curve predictions. Astrophys. J. 908, 101 (2021).

    Article  ADS  CAS  Google Scholar 

  26. Helling, C. et al. Cloud property trends in hot and ultra-hot giant gas planets (WASP-43b, WASP-103b, WASP-121b, HAT-P-7b, and WASP-18b). Astron. Astrophys. 649, A44 (2021).

    Article  CAS  Google Scholar 

  27. Thorngren, D., Gao, P. & Fortney, J. J. The intrinsic temperature and radiative–convective boundary depth in the atmospheres of hot Jupiters. Astrophys. J. Lett. 884, L6 (2019).

    Article  ADS  CAS  Google Scholar 

  28. Hörst, S. M. et al. Haze production rates in super-Earth and mini-Neptune atmosphere experiments. Nature Astron. 2, 303–306 (2018).

    Article  ADS  Google Scholar 

  29. Fleury, B., Gudipati, M. S., Henderson, B. L. & Swain, M. Photochemistry in hot H2-dominated exoplanet atmospheres. Astrophys. J. 871, 158 (2019).

    Article  ADS  CAS  Google Scholar 

  30. Kempton, E. M. R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018).

    Article  ADS  Google Scholar 

  31. Mullally, S. E., Rodriguez, D. R., Stevenson, K. B. & Wakeford, H. R. The Exo.MAST table for JWST exoplanet atmosphere observability. Res. Notes AAS 3, 193 (2019).

    Article  ADS  Google Scholar 

  32. Luna, J. L. & Morley, C. V. Empirically determining substellar cloud compositions in the era of the James Webb Space Telescope. Astrophys. J. 920, 146 (2021).

    Article  ADS  CAS  Google Scholar 

  33. Evans, T. M. et al. An optical transmission spectrum for the ultra-hot Jupiter WASP-121b measured with the Hubble Space Telescope. Astron. J. 156, 283 (2018).

    Article  ADS  CAS  Google Scholar 

  34. Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. van Dokkum, P. G. Cosmic-ray rejection by Laplacian edge detection. Publ. Astron. Soc. Pac. 113, 1420–1427 (2001).

    Article  ADS  Google Scholar 

  36. Pirzkal, N., Hilbert, B. & Rothberg, B. Trace and Wavelength Calibrations of the UVIS G280 +1/−1 Grism Orders Space Telescope WFC Instrument Science Report (Space Telescope Science Institute, 2017).

  37. Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. Lett. 580, L171–L175 (2002).

    Article  ADS  Google Scholar 

  38. Pont, F., Zucker, S. & Queloz, D. The effect of red noise on planetary transit detection. Mon. Not. R. Astron. Soc. 373, 231–242 (2006).

    Article  ADS  Google Scholar 

  39. Winn, J. N. et al. The Transit Light Curve Project. VII. The not-so-bloated exoplanet HAT-P-1b. Astron. J. 134, 1707–1712 (2007).

    Article  ADS  Google Scholar 

  40. Hauschildt, P. H., Allard, F. & Baron, E. The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K. Astrophys. J. 512, 377–385 (1999).

    Article  ADS  CAS  Google Scholar 

  41. Sing, D. K. Stellar limb-darkening coefficients for CoRot and Kepler. Astron. Astrophys. 510, A21 (2010).

    Article  ADS  Google Scholar 

  42. Schaller, G., Schaerer, D., Meynet, G. & Maeder, A. New grids of stellar models from 0.8 to 120 M solar at Z=0.020 and Z=0.001. Astron. Astrophys. Suppl. Ser. 96, 269 (1992).

    ADS  Google Scholar 

  43. Barman, T. S., Hauschildt, P. H. & Allard, F. Irradiated planets. Astrophys. J. 556, 885–895 (2001).

    Article  ADS  CAS  Google Scholar 

  44. Lothringer, J. D., Barman, T. & Koskinen, T. Extremely irradiated hot Jupiters: non-oxide inversions, H opacity, and thermal dissociation of molecules. Astrophys. J. 866, 27 (2018).

    Article  ADS  Google Scholar 

  45. Lothringer, J. D. & Barman, T. The influence of host star spectral type on ultra-hot Jupiter atmo- spheres. Astrophys. J. 876, 69 (2019).

    Article  ADS  CAS  Google Scholar 

  46. Hubeny, I., Burrows, A. & Sudarsky, D. A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594, 1011–1018 (2003).

    Article  ADS  CAS  Google Scholar 

  47. Fortney, J. J., Lodders, K., Marley, M. S. & Freedman, R. S. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008).

    Article  ADS  CAS  Google Scholar 

  48. Diamond-Lowe, H., Stevenson, K. B., Bean, J. L., Line, M. R. & Fortney, J. J. New analysis indicates no thermal inversion in the atmosphere of HD 209458b. Astrophys. J. 796, 66 (2014).

    Article  ADS  Google Scholar 

  49. Lewis, N. K. et al. Into the UV: the atmosphere of the hot Jupiter HAT-P-41b revealed. Astrophys. J. Lett. 902, L19 (2020).

    Article  ADS  CAS  Google Scholar 

  50. Lothringer, J. D. & Barman, T. S. The PHOENIX exoplanet retrieval algorithm and using H opacity as a probe in ultrahot Jupiters. Astron. J. 159, 289 (2020).

    Article  ADS  CAS  Google Scholar 

  51. ter Braak, C. J. F. & Vrugt, J. A. Differential evolution markov chain with snooker updater and fewer chains. Stat. Comput. 18, 435–446 (2008).

    Article  MathSciNet  Google Scholar 

  52. Lothringer, J. D. et al. A new window into planet formation and migration: refractory-to-volatile elemental ratios in ultra-hot Jupiters. Astrophys. J. 914, 12 (2021).

    Article  ADS  CAS  Google Scholar 

  53. Wilson, J. et al. Gemini/GMOS optical transmission spectroscopy of WASP-121b: signs of variability in an ultra-hot Jupiter? Mon. Not. R. Astron. Soc. 503, 4787–4801 (2021).

  54. Parmentier, V. & Guillot, T. A non-grey analytical model for irradiated atmospheres. I. Derivation. Astron. Astrophys. 562, A133 (2014).

    Article  ADS  Google Scholar 

  55. Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. AStat. Sci. 7, 457–511 (1992).

    Article  MATH  Google Scholar 

  56. MacDonald, R. J. & Madhusudhan, N. HD 209458b in new light: detection of nitrogen chemistry, patchy clouds and sub-solar water. Mon. Not. R. Astron. Soc. 469, 1979–1996 (2017).

    Article  ADS  CAS  Google Scholar 

  57. McCullough, P. R., Crouzet, N., Deming, D. & Madhusudhan, N. water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit. Astrophys. J. 791, 55 (2014).

    Article  ADS  Google Scholar 

  58. Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).

    Article  ADS  Google Scholar 

  59. Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect. II. The impact of stellar heterogeneity on transmission spectra of planets orbiting broadly Sun-like stars. Astron. J. 157, 96 (2019).

    Article  ADS  CAS  Google Scholar 

  60. Kirk, J. et al. ACCESS and LRG-BEASTS: a precise new optical transmission spectrum of the ultrahot Jupiter WASP-103b. Astron. J. 162, 34 (2021).

    Article  ADS  CAS  Google Scholar 

  61. Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).

    Article  ADS  Google Scholar 

  62. Jayasinghe, T. et al. The ASAS-SN catalogue of variable stars – II. Uniform classification of 412 000 known variables. Mon. Not. R. Astron. Soc. 486, 1907–1943 (2019).

    ADS  CAS  Google Scholar 

  63. Lecavelier Des Etangs, A., Pont, F., Vidal-Madjar, A. & Sing, D. Rayleigh scattering in the transit spectrum of HD 189733b. Astron. Astrophys. 481, L83–L86 (2008).

    Article  ADS  CAS  Google Scholar 

  64. Ohno, K. & Kawashima, Y. Super-Rayleigh slopes in transmission spectra of exoplanets generated by photochemical haze. Astrophys. J. Lett. 895, L47 (2020).

    Article  ADS  CAS  Google Scholar 

  65. Powell, D. et al. Transit signatures of inhomogeneous clouds on hot Jupiters: insights from micro- physical cloud modeling. Astrophys. J. 887, 170 (2019).

    Article  ADS  CAS  Google Scholar 

  66. Espinoza, N. & Jones, K. Constraining mornings and evenings on distant worlds: a new semianalytical approach and prospects with transmission spectroscopy. Astron. J. 162, 165 (2021).

    Article  ADS  CAS  Google Scholar 

  67. Mikal-Evans, T. et al. Diurnal variations in the stratosphere of an ultrahot planet. Nat. Astron. https://doi.org/10.1038/s41550-021-01592-w (2021).

  68. Showman, A. P., Fortney, J. J., Lewis, N. K. & Shabram, M. Doppler signatures of the atmospheric circulation on hot Jupiters. Astrophys. J. 762, 24 (2013).

    Article  ADS  Google Scholar 

  69. Woitke, P. et al. Equilibrium chemistry down to 100 K. Impact of silicates and phyllosilicates on the carbon to oxygen ratio. Astron. Astrophys. 614, A1 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the UV-SCOPE team for relevant discussions. We thank T. Barman for the use of the computing resources used in the calculation of the atmospheric retrievals. Support for this work was provided by NASA through grant number HST-GO-16086 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This research has made use of the NASA Astrophysics Data System and the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program.

Author information

Authors and Affiliations

Authors

Contributions

J.D.L. and D.K.S. contributed equally to this work. J.D.L. led the observing proposal with the assistance of D.K.S., Z.R., H.R.W., K.B.S., N.N. and P.L. J.D.L. also led the retrieval analysis. D.K.S. led the data analysis with contributions from Z.R., H.R.W., J.J.S. and A.T.W. All authors discussed the data analysis and interpretation and commented on the manuscript.

Corresponding authors

Correspondence to Joshua D. Lothringer or David K. Sing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Tad Komacek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 White light curves of the WASP-178b HST/WFC3/UVISG280 transit.

Error bars show the 1-σ uncertainties. The left column (a, c, e) shows the +1 spectral order, while the right column (b, d, f) shows the −1 spectral order. The top row (a, b) are the raw light curves, the middle row (c, d) are the light curves with systematics removed and a transit fit, and the bottom row (e, f) are the residuals with the standard deviation of the residuals also shown (dotted lines). Plots of the binned residual RMS are also shown as insets.

Extended Data Fig. 2 WASP-178b NUV-optical light curve comparison.

Two example fitted light curves with 1-σ uncertainties from the +1 spectral order from spectroscopic bins covering 0.2412 (a, c, e) and 0.5875 μm (b, d, f), with transit depths of 1.48 ± 0.04% and 1.16 ± 0.03%, respectively. The rows are the same as in Extended Data Fig. 1.

Extended Data Fig. 3 WASP-178b spectral order comparison.

WFC3/UVIS G280 transmission spectrum of WASP-178b (with 1-σ uncertainties) from the +1 (blue) and −1 order (red). The −1 order shows larger uncertainties due to a reduced throughput, but the transmission spectra show good agreement including an enhanced NUV absorption between 0.2 and 0.3 µm.

Extended Data Fig. 4 WASP-178b transit asymmetry analysis.

a, The 0.18–0.28 µm NUV light curve of WASP-178 b (with 1-σ uncertainties), with the best-fitting symmetric light curve, and an asymmetric light curve representing a scenario with a hotter/larger trailing terminator, and a colder/smaller leading terminator. The radius of the leading terminator was set to the optical value, and the trailing terminator was fixed to the value that fits the NUV transit depth. The inset shows the RMS scatter of the residuals as a function of number of points per bin, N. b, Residuals to the symmetric and asymmetric light curve fits.

Extended Data Fig. 5 WASP-178b atmospheric retrieval posterior distribution.

2-D cross- sections of the retrieved posterior distribution with 1-D marginalized distribution for the fitted parameters. The quoted quantities are the mean and 1-σ retrieved values. The first five parameters are the temperature structure parameterization from ref. 57, the sixth is the reference radius, and the final eight are the various atomic and molecular abundances.

Extended Data Fig. 6 WASP-178b NUV-optical transmission spectrum (no SiO).

Same as Fig. 1, but for the retrieval without SiO. Note the combined ability of Mg I and Fe II absorption to generate the large short-wavelength transit depths.

Extended Data Fig. 7 Chemical equilibrium of Si and Fe.

Partial pressures of important silicon- bearing species (a) and iron-bearing species (b) at 1 mbar as a function of temperature. Equilibrium chemical abundances were calculated using GGchem69.

Extended Data Fig. 8 High-resolution HST/STIS/E230M transmission spectrum of WASP- 178b.

NUV high-resolution transit spectra of WASP-178b (with 1-σ uncertainties) compared to WASP-121b around the Fe II (a) and Mg II (b) lines. Shown are the spectra from STIS E230M for WASP-178b (red), WASP-121b17 (grey), and the low resolution UVIS spectra (blue). While WASP-121b shows strong Fe II and Mg II absorption features, the WASP-178b E230M spectra is consistent with the broadband NUV continuum with no Fe II or Mg II.

Extended Data Table 1 WASP-178 HST/WFC3/UVIS transmission spectrum and noise properties
Extended Data Table 2 WASP-178b fitted and retrieved orbital and atmosphere parameters

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lothringer, J.D., Sing, D.K., Rustamkulov, Z. et al. UV absorption by silicate cloud precursors in ultra-hot Jupiter WASP-178b. Nature 604, 49–52 (2022). https://doi.org/10.1038/s41586-022-04453-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04453-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing