Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observing polymerization in 2D dynamic covalent polymers

Abstract

The quality of crystalline two-dimensional (2D) polymers1,2,3,4,5,6 is intimately related to the elusive polymerization and crystallization processes. Understanding the mechanism of such processes at the (sub)molecular level is crucial to improve predictive synthesis and to tailor material properties for applications in catalysis7,8,9,10 and (opto)electronics11,12, among others13,14,15,16,17,18. We characterize a model boroxine 2D dynamic covalent polymer, by using in situ scanning tunnelling microscopy, to unveil both qualitative and quantitative details of the nucleation–elongation processes in real time and under ambient conditions. Sequential data analysis enables observation of the amorphous-to-crystalline transition, the time-dependent evolution of nuclei, the existence of ‘non-classical’ crystallization pathways and, importantly, the experimental determination of essential crystallization parameters with excellent accuracy, including critical nucleus size, nucleation rate and growth rate. The experimental data have been further rationalized by atomistic computer models, which, taken together, provide a detailed picture of the dynamic on-surface polymerization process. Furthermore, we show how 2D crystal growth can be affected by abnormal grain growth. This finding provides support for the use of abnormal grain growth (a typical phenomenon in metallic and ceramic systems) to convert a polycrystalline structure into a single crystal in organic and 2D material systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Disorder-to-order transition.
Fig. 2: Nucleation–elongation processes.
Fig. 3: Normal and abnormal 2D grain growth routes.
Fig. 4: Identification of grain boundaries and their kinetic movement.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within the paper and its Supplementary Information. Additional data are available from the corresponding authors upon reasonable request.

References

  1. Wang, W. & Schlüter, A. D. Synthetic 2D polymers: a critical perspective and a look into the future. Macromol. Rapid Commun. 40, 1800719 (2019).

    Article  Google Scholar 

  2. Feng, X. & Schlüter, A. D. Towards macroscopic crystalline 2D polymers. Angew. Chem. Int. Ed. Engl. 57, 13748–13763 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Servalli, M. & Schlüter, A. D. Synthetic two-dimensional polymers. Annu. Rev. Mater. Res. 47, 361–389 (2017).

    Article  CAS  Google Scholar 

  4. Payamyar, P., King, B. T., Öttinger, H. C. & Schlüter, A. D. Two-dimensional polymers: concepts and perspectives. Chem. Commun. 52, 18–34 (2016).

    Article  CAS  Google Scholar 

  5. Colson, J. W. & Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 5, 453–465 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Sakamoto, J., van Heijst, J., Lukin, O. & Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. Engl. 48, 1030–1069 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, X. et al. Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 138, 12332–12335 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Ding, S.-Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Dong, R. et al. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. Engl. 54, 12058–12063 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Dogru, M. et al. A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew. Chem. Int. Ed. Engl. 52, 2920–2924 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. Int. Ed. Engl. 47, 8826–8830 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Li, X. et al. Tuneable near white-emissive two-dimensional covalent organic frameworks. Nat. Commun. 9, 2335 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  14. DeBlase, C. R., Silberstein, K. E., Truong, T.-T., Abruña, H. D. & Dichtel, W. R. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135, 16821–16824 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  PubMed  ADS  Google Scholar 

  17. Liu, W. et al. A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nat. Chem. 9, 563–570 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Bin, H. et al. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 7, 13651 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Liu, K. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Lange, R. Z., Hofer, G., Weber, T. & Schlüter, A. D. A two-dimensional polymer synthesized through topochemical [2 + 2]-cycloaddition on the multigram scale. J. Am. Chem. Soc. 139, 2053–2059 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Kissel, P., Murray, D. J., Wulftange, W. J., Catalano, V. J. & King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6, 774–778 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Kory, M. J. et al. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 6, 779–784 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Schlüter, A. D. Mastering polymer chemistry in two dimensions. Commun. Chem. 3, 12 (2020).

    Article  Google Scholar 

  24. Grill, L. & Hecht, S. Covalent on-surface polymerization. Nat. Chem. 12, 115–130 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Zhong, Y. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 366, 1379–1384 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Kissel, P. et al. A two-dimensional polymer prepared by organic synthesis. Nat. Chem. 4, 287–291 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Evans, A. M. et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Evans, A. M. et al. Emissive single-crystalline boroxine-linked colloidal covalent organic frameworks. J. Am. Chem. Soc. 141, 19728–19735 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Martínez-Abadía, M. & Mateo-Alonso, A. Structural approaches to control interlayer interactions in 2D covalent organic frameworks. Adv. Mater. 32, 2002366 (2020).

    Article  Google Scholar 

  30. Li, H. et al. Nucleation–elongation dynamics of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 142, 1367–1374 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Li, H. et al. Nucleation and growth of covalent organic frameworks from solution: the example of COF-5. J. Am. Chem. Soc. 139, 16310–16318 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, B. J. & Dichtel, W. R. Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J. Am. Chem. Soc. 136, 8783–8789 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, X.-H. et al. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid–vapor interface reactions. J. Am. Chem. Soc. 135, 10470–10474 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, C., Yu, Y., Zhang, W., Zeng, Q. & Lei, S. Room-temperature synthesis of covalent organic frameworks with a boronic ester linkage at the liquid/solid interface. Chem. Eur. J. 22, 18412–18418 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Grossmann, L. et al. On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat. Chem. 13, 730–736 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Schlüter, A. D., Weber, T. & Hofer, G. How to use X-ray diffraction to elucidate 2D polymerization propagation in single crystals. Chem. Soc. Rev. 49, 5140–5158 (2020).

    Article  PubMed  Google Scholar 

  37. Crawford, A. G. et al. Synthesis of 2- and 2,7-functionalized pyrene derivatives: an application of selective C–H borylation. Chem. Eur. J. 18, 5022–5035 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed. Engl. 48, 5439–5442 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Medina, D. D. et al. Room temperature synthesis of covalent–organic framework films through vapor-assisted conversion. J. Am. Chem. Soc. 137, 1016–1019 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Dienstmaier, J. F. et al. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 6, 7234–7242 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Bilbao, N. et al. Anatomy of on-surface synthesized boroxine two-dimensional polymers. ACS Nano 14, 2354–2365 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Sassi, M., Oison, V., Debierre, J.-M. & Humbel, S. Modelling the two-dimensional polymerization of 1,4-benzene diboronic acid on a Ag surface. ChemPhysChem 10, 2480–2485 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N. & Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Cai, Z.-F. et al. Electric-field-mediated reversible transformation between supramolecular networks and covalent organic frameworks. J. Am. Chem. Soc. 141, 11404–11408 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Zhan, G., Cai, Z.-F., Martínez-Abadía, M., Mateo-Alonso, A. & De Feyter, S. Real-time molecular-scale imaging of dynamic network switching between covalent organic frameworks. J. Am. Chem. Soc. 142, 5964–5968 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  47. De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article  PubMed  Google Scholar 

  48. Viswanathan, R. & Bauer, C. L. Kinetics of grain boundary migration in copper bicrystals with [001] rotation axes. Acta Metall. 21, 1099–1109 (1973).

    Article  CAS  Google Scholar 

  49. Sun, R. C. & Bauer, C. L. Tilt boundary migration in NaCl bicrystals. Acta Metall. 18, 639–647 (1970).

    Article  CAS  Google Scholar 

  50. Rollett, A. D., Srolovitz, D. J. & Anderson, M. P. Simulation and theory of abnormal grain growth—anisotropic grain boundary energies and mobilities. Acta Metall. 37, 1227–1240 (1989).

    Article  CAS  Google Scholar 

  51. Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009).

    Article  CAS  MATH  ADS  Google Scholar 

  52. Marek, A. et al. The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science. J. Phys. Condens. Matter 26, 213201 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Yu, V. W.-Z. et al. ELSI: a unified software interface for Kohn–Sham electronic structure solvers. Comput. Phys. Commun. 222, 267–285 (2018).

    Article  CAS  ADS  Google Scholar 

  54. Tkatchenko, A., DiStasio, R. A., Car, R. & Scheffler, M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 108, 236402 (2012).

    Article  PubMed  ADS  Google Scholar 

  55. Ambrosetti, A., Reilly, A. M., DiStasio, R. A. Jr & Tkatchenko, A. Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 140, 18A508 (2014).

    Article  PubMed  Google Scholar 

  56. Bitzek, E., Koskinen, P., Gähler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

    Article  PubMed  ADS  Google Scholar 

  57. Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  PubMed  Google Scholar 

  58. Jorgensen, W. L. & Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  60. Hourahine, B. et al. DFTB plus, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 152, 124101 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Grimme, S., Bannwarth, C. & Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 13, 1989–2009 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Rüger, R. et al. AMS v.2021.1 (SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, the Netherlands, 2021); http://www.scm.com

  63. Bannwarth, C. et al. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci. 11, e1493 (2021).

    Article  CAS  Google Scholar 

  64. Spicher, S. & Grimme, S. Robust atomistic modeling of materials, organometallic, and biochemical systems. Angew. Chem. Int. Ed. Engl. 59, 15665–15673 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Verstraete and N. Bilbao for helpful discussions. We thank Y. Liao for helping with the preparation of the manuscript. We thank Y. Zhang for helping with data analysis. This work was supported by the Research Foundation - Flanders (FWO), in part by FWO under EOS 30489208, the Marie Sklodowska Curie ETN project ULTIMATE (GA-813036), and KU Leuven Internal Grant 3E180504, China Scholarship Council (201908350094), the Basque Foundation for Science (Ikerbasque), POLYMAT, the University of the Basque Country (Grupo de Investigación GIU17/054), Diputación Foral de Guipuzkoa, Gobierno Vasco (PIBA and BERC programmes), Gobierno de España (Ministerio de Economía y Competitividad CTQ2016-77970-R). Technical and human support provided by SGIker of UPV/EHU and European funding (ERDF and ESF) is acknowledged. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 722951). This project has received funding from the European Union´s Horizon 2020 research and innovation programme under grant agreement no. 664878 and no. 899895. In addition, support through the project IF/00894/2015, the advanced computing CPCA/A2/2524/2020 granting access to the Navigator cluster at LCA-UC and within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020 funded by national funds through the Portuguese Foundation for Science and Technology I.P./MCTES is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

G.Z., Z.-F.C. and S.D.F. conceived the idea and designed the experiments. G.Z., Z.-F.C., L.Y. and N.H. carried out the in situ STM experiments and analysed the data. K.S. and M.M.-F carried out the DFT and tight-binding calculation. M.M.-A. carried out the synthesis of the monomer. The text was initially composed by G.Z., Z.-F.C., A.M.-A. and S.D.F., and all authors further contributed to the discussion of the experimental work and the final version of the manuscript.

Corresponding authors

Correspondence to Zhen-Feng Cai or Steven De Feyter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Markus Lackinger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–4 and Figs. 1–30.

Supplementary Data 1

Statistical analysis of critical nucleation size for Fig. 2e.

41586_2022_4409_MOESM3_ESM.mp4

Supplementary Video 1 In situ STM showing the dynamic nucleation process at liquid–solid interface with a scan rate of 1.5 min per frame. The video shows the emergence and elongation of some 2DPs nuclei within the disordered area. The video also demonstrates the disappearance of on-surface generated 2DPs nuclei, implying the reversible boroxine chemistry on the HOPG surface. The video is played at ×180 speed. Image size: 80 nm × 80 nm.

41586_2022_4409_MOESM4_ESM.mp4

Supplementary Video 2 In situ STM showing the nucleation–elongation processes. The video is played at ×180 speed. Image size: 150 nm × 150 nm.

41586_2022_4409_MOESM5_ESM.mp4

Supplementary Video 3 In situ STM showing the restricted motion of 2DPs nuclei, with the presence of surface defect. The video is played at ×180 speed. Image size: 60 nm × 60 nm.

41586_2022_4409_MOESM6_ESM.mp4

Supplementary Video 4 In situ STM showing the slow kinetics during normal grain growth. The video is played at ×180 speed. Image size: 60 nm × 60 nm.

41586_2022_4409_MOESM7_ESM.mp4

Supplementary Video 5 In situ STM showing the preferential growth of some nuclei (S2). During abnormal grain growth (AGG), S2 grows at the expense of R1 and S1. The video is played at ×180 speed. Image size: 100 nm × 100 nm.

41586_2022_4409_MOESM8_ESM.mp4

Supplementary Video 6 In situ STM showing the formation of a unidirectional domain (S2) by taking advantage of abnormal grain growth. The video is played at ×180 speed. Image size: 80 nm × 80 nm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, G., Cai, ZF., Strutyński, K. et al. Observing polymerization in 2D dynamic covalent polymers. Nature 603, 835–840 (2022). https://doi.org/10.1038/s41586-022-04409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04409-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing