Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Free-standing homochiral 2D monolayers by exfoliation of molecular crystals

Abstract

Two-dimensional materials with monolayer thickness and extreme aspect ratios are sought for their high surface areas and unusual physicochemical properties1. Liquid exfoliation is a straightforward and scalable means of accessing such materials2, but has been restricted to sheets maintained by strong covalent, coordination or ionic interactions3,4,5,6,7,8,9,10. The exfoliation of molecular crystals, in which repeat units are held together by weak non-covalent bonding, could generate a greatly expanded range of two-dimensional crystalline materials with diverse surfaces and structural features. However, at first sight, these weak forces would seem incapable of supporting such intrinsically fragile morphologies. Against this expectation, we show here that crystals composed of discrete supramolecular coordination complexes can be exfoliated by sonication to give free-standing monolayers approximately 2.3 nanometres thick with aspect ratios up to approximately 2,500:1, sustained purely by apolar intermolecular interactions. These nanosheets are characterized by atomic force microscopy and high-resolution transmission electron microscopy, confirming their crystallinity. The monolayers possess complex chiral surfaces derived partly from individual supramolecular coordination complex components but also from interactions with neighbours. In this respect, they represent a distinct type of material in which molecular components are all equally exposed to their environment, as if in solution, yet with properties arising from cooperation between molecules, because of crystallinity. This unusual nature is reflected in the molecular recognition properties of the materials, which bind carbohydrates with strongly enhanced enantiodiscrimination relative to individual molecules or bulk three-dimensional crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Top-down fabrication of chiral 2D monolayer nanosheets of supramolecular metallacycles.
Fig. 2: HR-TEM of chiral 2D nanosheets of 13.
Fig. 3: CTF-corrected HR-TEM imaging.
Fig. 4: Enantioselective recognition of chiral 2D monolayer nanosheets.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors.

References

  1. Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  CAS  Google Scholar 

  3. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kory, M. J. et al. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 6, 779–784 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Li, J. et al. Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181–187 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Puthirath Balan, A. et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol. 13, 602–609 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Varoon, K. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334, 72–75 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Nicks, J., Boer, S. A., White, N. G. & Foster, J. A. Monolayer nanosheets formed by liquid exfoliation of charge-assisted hydrogen-bonded frameworks. Chem. Sci. 12, 3322–3327 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science 342, 224–227 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Wasio, N. A. et al. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 507, 86–89 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Suzuki, Y. et al. Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 533, 369–373 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xing, L. B., Peng, Z. T., Li, W. T. & Wu, K. On controllability and applicability of surface molecular self-assemblies. Acc. Chem. Res. 52, 1048–1058 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Cook, T. R., Zheng, Y.-R. & Stang, P. J. Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem. Rev. 113, 734–777 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Olenyuk, B., Whiteford, J. A., Fechtenkötter, A. & Stang, P. J. Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 398, 796–799 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Fujita, M., Yazaki, J. & Ogura, K. Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4'-bpy)]4(NO3)8 (en = ethylenediamine, bpy = bipyridine), which recognizes an organic molecule in aqueous media. J. Am. Chem. Soc. 112, 5645–5647 (1990).

    Article  CAS  Google Scholar 

  19. Fujita, M. et al. Self-assembly of ten molecules into nanometre-sized organic host frameworks. Nature 378, 469–471 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Mal, P., Breiner, B., Rissanen, K. & Nitschke, J. R. White phosphorus is air-stable within a self-assembled tetrahedral capsule. Science 324, 1697–1699 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Rizzuto, F. J. & Nitschke, J. R. Stereochemical plasticity modulates cooperative binding in a CoII12L6 cuboctahedron. Nat. Chem. 9, 903–908 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Yamashina, M. et al. An antiaromatic-walled nanospace. Nature 574, 511–515 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Chen, B., Holstein, J. J., Horiuchi, S., Hiller, W. G. & Clever, G. H. Pd(II) coordination sphere engineering: pyridine cages, quinoline bowls, and heteroleptic pills binding one or two fullerenes. J. Am. Chem. Soc. 141, 8907–8913 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoshizawa, M., Tamura, M. & Fujita, M. Diels-Alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 312, 251–254 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Kaphan, D. M., Levin, M. D., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular microenvironment strategy for transition metal catalysis. Science 350, 1235–1238 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Cullen, W., Misuraca, M. C., Hunter, C. A., Williams, N. H. & Ward, M. D. Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage. Nat. Chem. 8, 231–236 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Xuan, W., Zhang, M., Liu, Y., Chen, Z. & Cui, Y. A chiral quadruple-stranded helicate cage for enantioselective recognition and separation. J. Am. Chem. Soc. 134, 6904–6907 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Li, G., Yu, W. & Cui, Y. A homochiral nanotubular crystalline framework of metallomacrocycles for enantioselective recognition and separation. J. Am. Chem. Soc. 130, 4582–4583 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, T., Liu, Y., Xuan, W. & Cui, Y. Chiral nanoscale metal–organic tetrahedral cages: diastereoselective self-assembly and enantioselective separation. Angew. Chem. Int. Ed. 49, 4121–4124 (2010).

    Article  CAS  Google Scholar 

  30. Dong, J. et al. Self-Assembly of highly stable zirconium(IV) coordination cages with aggregation induced emission molecular rotors for live-cell imaging. Angew. Chem. Int. Ed. 59, 10151–10159 (2020).

    Article  CAS  Google Scholar 

  31. Sun, Y. et al. Rhomboidal Pt(II) metallacycle-based NIR-II theranostic nanoprobe for tumor diagnosis and image-guided therapy. Proc. Natl Acad. Sci. USA 116, 1968–1973 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. August, D. P. et al. Self-assembly of a layered two-dimensional molecularly woven fabric. Nature 588, 429–435 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Dong, J. et al. Chiral NH-controlled supramolecular metallacycles. J. Am. Chem. Soc. 139, 1554–1564 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Backes, C. et al. Equipartition of energy defines the size–thickness relationship in liquid-exfoliated nanosheets. ACS Nano 13, 7050–7061 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Dazzi, A. & Prater, C. B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science 359, 675–679 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Liu, L. et al. Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Ferrand, Y., Crump, M. P. & Davis, A. P. A synthetic lectin analog for biomimetic disaccharide recognition. Science 318, 619–622 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Ke, C., Destecroix, H., Crump, M. P. & Davis, A. P. A simple and accessible synthetic lectin for glucose recognition and sensing. Nat. Chem. 4, 718–723 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Tromans, R. A. et al. A biomimetic receptor for glucose. Nat. Chem. 11, 52–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Dong, J. et al. Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. Nat. Commun. 8, 1142 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tan, C. et al. High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors. J. Am. Chem. Soc. 137, 10430–10436 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. QSTEM v.2.51 (2018); http://www.qstem.org

  45. Mei, X. & Wolf, C. Enantioselective sensing of chiral carboxylic acids. J. Am. Chem. Soc. 126, 14736–14737 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (grant nos 21875136, 91856204 and 91956124), the National Key Basic Research Program of China (grant nos 2021YFA1200402, 2021YFA1501501 and 2021YFA1200300), the Shanghai Rising-Star Program (grant no. 19QA1404300), the National Research Foundation Singapore (grant no. NRF-CRP14-2014-01), the National University of Singapore and the Ministry of Education of Singapore (grant no. C-261-000-207-532/C-261-000-777-532), and the University of Bristol. Y.H. acknowledges the support of the CCF grant (no. FCC/1/1972‐19) from King Abdullah University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. formulated and supervised the project. J.D., C.T. and D.C. performed the synthesis and purification of the chiral ultrathin 2D nanosheets of 1–3; performed the AFM, field-emission scanning electron microscopy, powder X-ray diffraction, ultraviolet–visible spectrometry, electrospray ionization mass spectrometry, FT-IR, TGA, dynamic light scattering, XPS, optical band gaps and Brunauer–Emmett–Teller analyses, and the fluorescence titration and electrospinning membrane sensing experiments. L.L. and Y.H. performed the HR-TEM imaging and analyses. J.Z. and Q.Z. performed the ultrafast TA experiments and analyses. Q.X., Z.Q. and J.J. performed the theoretical calculations and simulations. Y.L. and A.P.D. advised on the interpretation of results. J.D., A.P.D. and Y.C. wrote the manuscript. All authors contributed to the data analysis, discussion and manuscript revision.

Corresponding authors

Correspondence to Yu Han, Anthony P. Davis or Yong Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature thanks Jonathan Foster and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, including Figs. 1–77, Tables 1–4 and References.

Supplementary Video 1

Molecular dynamics simulation of l-glucose (orange colour) and d-glucose (green colour) binding to zero-dimensional discrete metallacycles of (R)-1 in acetonitrile solution.

Supplementary Video 2

Molecular dynamics simulation of l-glucose (orange colour) and d-glucose (green colour) binding to 3D bulk crystals of (R)-1 in acetonitrile solution.

Supplementary Video 3

Molecular dynamics simulation of l-glucose (orange colour) and d-glucose (green colour) binding to 2D monolayer nanosheets of (R)-1 in acetonitrile solution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Liu, L., Tan, C. et al. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature 602, 606–611 (2022). https://doi.org/10.1038/s41586-022-04407-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04407-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing