Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Geophysical imaging of the Yellowstone hydrothermal plumbing system


The nature of Yellowstone National Park’s plumbing system linking deep thermal fluids to its legendary thermal features is virtually unknown. The prevailing concepts of Yellowstone hydrology and chemistry are that fluids reside in reservoirs with unknown geometries, flow laterally from distal sources and emerge at the edges of lava flows1,2,3,4. Here we present a high-resolution synoptic view of pathways of the Yellowstone hydrothermal system derived from electrical resistivity and magnetic susceptibility models of airborne geophysical data5,6. Groundwater and thermal fluids containing appreciable total dissolved solids significantly reduce resistivities of porous volcanic rocks and are differentiated by their resistivity signatures7. Clay sequences mapped in thermal areas8,9 and boreholes10 typically form at depths of less than 1,000  metres over fault-controlled thermal fluid and/or gas conduits11,12,13,14. We show that most thermal features are located above high-flux conduits along buried faults capped with clay that has low resistivity and low susceptibility. Shallow subhorizontal pathways feed groundwater into basins that mixes with thermal fluids from vertical conduits. These mixed fluids emerge at the surface, controlled by surficial permeability, and flow outwards along deeper brecciated layers. These outflows, continuing between the geyser basins, mix with local groundwater and thermal fluids to produce the observed geochemical signatures. Our high-fidelity images inform geochemical and groundwater models for hydrothermal systems worldwide.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Grey-shade Digital Elevation Model overlain by a simplified geologic map of our study area in YNP.
Fig. 2: Cross sections from 1D resistivity (top of panel) and 3D susceptibility inverted models (bottom of panel) along selected profiles (locations in Fig. 1).
Fig. 3: Plan view from resistivity and susceptibility inversions.

Data availability

The electromagnetic data5 and models23 and magnetic6 data are freely available.


  1. Hurwitz, S. & Lowenstern, J. B. Dynamics of the Yellowstone hydrothermal system. Rev. Geophys. 52, 375–411 (2014).

    ADS  Google Scholar 

  2. Morgan, L. A., Shanks, W. C. & Pierce, K. L. Hydrothermal processes above the Yellowstone magma chamber: large hydrothermal systems and large hydrothermal explosions. Geol. Soc. Am. Spec. Pap. 459, 1–95 (2009).

    Google Scholar 

  3. Fournier, R. O. Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annu. Rev. Earth Planet. Sci. 17, 13–53 (1989).

    ADS  CAS  Google Scholar 

  4. Truesdell, A. H., Nathenson, M. & Rye, R. O. The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters. J. Geophys. Res. 82, 3694–3704 (1977).

    ADS  CAS  Google Scholar 

  5. Finn, C. A., Bedrosian, P. A., Bloss, B. R., Holbrook, W. S. & Auken, E. Airborne electromagnetic and magnetic survey, Yellowstone National Park, 2016 – minimally processed data. US Geol. Surv. ScienceBase Data Release (2021).

  6. US Geological Survey. An Aeromagnetic Survey in Yellowstone National Park: a web site for distribution of data (on-line edition). US Geol. Surv. Open-File Report 00-163 (2000).

  7. Archie, G. E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Min. Metall. Petrol. Eng. 146, 54–62 (1942).

    Google Scholar 

  8. Christiansen, R. L. The quaternary and pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana. US Geol. Surv. Prof. Pap. 729-G, G1–G150 (2001).

    Google Scholar 

  9. Livo, K. E., Kruse, F. A., Clark, R. N., Kokaly, R. F. & Shanks III, W. US Geol. Surv. Prof. Pap. 1717, 493–507 (2007).

  10. White, D. E., Fournier, R. O., Muffler, L. J. P. & Truesdell, A. H. Physical results of research drilling in thermal areas of Yellowstone National Park, Wyoming. US Geol. Surv. Prof. Pap. 892, 70 (1975).

    Google Scholar 

  11. Bibby, H., Caldwell, T., Davey, F. & Webb, T. Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. J. Volcanol. Geotherm. Res. 68, 29–58 (1995).

    ADS  CAS  Google Scholar 

  12. Hochstein, M. P. & Soengkono, S. Magnetic anomalies associated with high temperature reservoirs in the Taupo Volcanic Zone (New Zealand). Geothermics 26, 1–24 (1997).

    Google Scholar 

  13. Rowland, J. & Sibson, R. Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids 4, 259–283 (2004).

    Google Scholar 

  14. Simmons, S. F., White, N. C. & John, D. A. in Economic Geology, One Hundredth Anniversary Volume (eds Hedenquist, J. W. et al.) 485–522 (Society of Economic Geology, 2005).

  15. Farrell, J., Smith, R. B., Husen, S. & Diehl, T. Tomography from 26 years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera. Geophys. Res. Lett. 41, 3068–3073 (2014).

    ADS  Google Scholar 

  16. Nordstrom, D. K., McCleskey, R. B. & Ball, J. W. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid–sulfate waters. Appl. Geochem. 24, 191–207 (2009).

    ADS  CAS  Google Scholar 

  17. Farrell, J., Smith, R. B., Taira, T. A., Chang, W. L. & Puskas, C. M. Dynamics and rapid migration of the energetic 2008–2009 Yellowstone Lake earthquake swarm. Geophys. Res. Lett. 37, 19305–19309 (2010).

  18. Shelly, D. R. & Hardebeck, J. L. Illuminating faulting complexity of the 2017 Yellowstone Maple Creek earthquake swarm. Geophys. Res. Lett. 46, 2544–2552 (2019).

    ADS  Google Scholar 

  19. Waite, G. P. & Smith, R. B. Seismic evidence for fluid migration accompanying subsidence of the Yellowstone caldera. J. Geophys. Res. Solid Earth 107, 1–15 (2002). ESE 1-1-ESE.

    ADS  Google Scholar 

  20. Gardner, W. P., Susong, D. D., Solomon, D. K. & Heasler, H. P. A multitracer approach for characterizing interactions between shallow groundwater and the hydrothermal system in the Norris Geyser Basin area, Yellowstone National Park. Geochem. Geophys. Geosystems 12 (2011).

  21. Dobson, P. F., Kneafsey, T. J., Hulen, J. & Simmons, A. Porosity, permeability, and fluid flow in the Yellowstone geothermal system, Wyoming. J. Volcanol. Geotherm. Res. 123, 313–324 (2003).

    ADS  CAS  Google Scholar 

  22. Bouligand, C. et al. Heat and mass transport in a vapor‐dominated hydrothermal area in Yellowstone National Park, USA: Inferences from magnetic, electrical, electromagnetic, subsurface temperature, and diffuse CO2 flux measurements. J. Geophys. Res. Solid Earth 124, 291–309 (2019).

    ADS  CAS  Google Scholar 

  23. Bedrosian, P. et al. Airborne electromagnetic survey processed data and models data release, Yellowstone National Park, Wyoming, 2016. US Geol. Surv. ScienceBase Data Release (2021).

  24. Auken, E., Christiansen, A. V., Jacobsen, L. & Sørensen, K. I. A resolution study of buried valleys using laterally constrained inversion of TEM data. J. Appl. Geophys. 65, 10–20 (2008).

    ADS  Google Scholar 

  25. Munoz, G. Exploring for geothermal resources with electromagnetic methods. Surv. Geophys. 35, 101–122 (2014).

    ADS  Google Scholar 

  26. Jaworowski, C. et al. Geologic and geochemical results from boreholes drilled in Yellowstone National Park, Wyoming, 2007 and 2008. US Geol. Surv. Open-File Report 2016-1029, 1–38 (2016).

    Google Scholar 

  27. Bouligand, C., Glen, J. M. & Blakely, R. J. Distribution of buried hydrothermal alteration deduced from high‐resolution magnetic surveys in Yellowstone National Park. J. Geophys. Res. Solid Earth 119, 2595–2630 (2014).

    ADS  CAS  Google Scholar 

  28. Bouligand, C. et al. Geological and thermal control of the hydrothermal system in northern Yellowstone Lake: inferences from high resolution magnetic surveys. J. Geophys. Res. Solid Earth 125, e2020JB019743 (2020).

  29. Finn, C. A. & Morgan, L. A. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park. J. Volcanol. Geotherm. Res. 115, 207–231 (2002).

    ADS  CAS  Google Scholar 

  30. Phillips, J. D. Using vertical Fourier transforms to invert potential-field data to magnetization or density models in the presence of topography. SEG Technical Program Expanded Abstracts (2014).

  31. Phillips, J. D. Designing matched bandpass and azimuthal filters for the separation of potential-field anomalies by source region and source type. ASEG Extended Abstracts (2001).

  32. Finn, C. A., Deszcz-Pan, M., Ball, J. L., Bloss, B. J. & Minsley, B. J. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability. J. Volcanol. Geotherm. Res. 357, 261–275 (2018).

    ADS  CAS  Google Scholar 

  33. Hersir, G. P. & Arnason, K. Resistivity of rocks. In Short Course IX on Exploration for Geothermal Resources 1–8 (United Nations University, Geothermal Development Company and Kenya Electricity Generating Co., 2014).

  34. Dickey, K. A. Geophysical Investigation of the Yellowstone Hydrothermal System. MS thesis, Virginia Polytechnical Institute (2018).

  35. Llera, F. J., Sato, M., Nakatsuka, K. & Yokoyama, H. Temperature dependence of the electrical resistivity of water saturated rocks. Geophysics 55, 576–585 (1988).

    Google Scholar 

  36. Jaworowski, C., Heasler, H. P., Hardy, C. C. & Queen, L. P. Control of hydrothermal fluids by natural fractures at Norris Geyser Basin. Yellowstone Sci. 14, 13–23 (2006).

    Google Scholar 

  37. McCleskey, R. et al. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, Beginning 2009. US. Geolog. Surv. Water Resources (2014).

  38. Gardner, W. P., Susong, D. D., Solomon, D. K. & Heasler, H. P. Using environmental tracers and numerical simulation to investigate regional hydrothermal basins—Norris Geyser Basin area, Yellowstone National Park, USA. J. Geophys. Res. Solid Earth 118, 2777–2787 (2013).

    ADS  Google Scholar 

  39. Allis, R. Geophysical anomalies over epithermal systems. J. Geochem. Explor. 36, 339–374 (1990).

    Google Scholar 

  40. Bibby, H. M., Dawson, G. B., Rayner, H. H., Bennie, S. L. & Bromley, C. J. Electrical resistivity and magnetic investigations of the geothermal systems in the Rotorua area, New Zealand. Geothermics 21, 43–64 (1992).

    Google Scholar 

  41. Hedenquist, J. W., Goff, F., Phillips, F. M., Elmore, D. & Stewart, M. K. Groundwater dilution and residence times, and constraints on chloride source, in the Mokai geothermal system, New Zealand, from chemical, stable isotope, tritium, and 36Cl data. J. Geophys. Res. Solid Earth 95, 19365–19375 (1990).

    Google Scholar 

  42. Farrell, J., Husen, S. & Smith, R. B. Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system. J. Volcanol. Geotherm. Res. 188, 260–276 (2009).

    ADS  CAS  Google Scholar 

  43. Vaughan, R. G., Heasler, H., Jaworowski, C., Lowenstern, J. B. & Keszhelyi, L. P. Provisional maps of thermal areas in Yellowstone National Park, based on satellite thermal infrared imaging and field observations. U.S. Geol. Surv. Scientific Investigations Report 2014-5137, 1–22 (2014).

    Google Scholar 

  44. White, D. E., Hutchinson, R. A. & Keith, T. E. The geology and remarkable thermal activity of Norris Geyser basin, Yellowstone National Park, Wyoming. US Geol. Surv. Prof. Pap. 1456, 1–84 (1988).

    Google Scholar 

  45. Auken, E. et al. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data. Explor. Geophys. 46, 223–235 (2015).

    ADS  Google Scholar 

  46. Schamper, C., Auken, E. & Sørensen, K. Coil response inversion for very early time modelling of helicopter‐borne time‐domain electromagnetic data and mapping of near‐surface geological layers. Geophys. Prospect. 62, 658–674 (2014).

    ADS  Google Scholar 

  47. Auken, E., Christiansen, A. V., Jacobsen, B. H., Foged, N. & Sørensen, K. I. Piecewise 1D laterally constrained inversion of resistivity data. Geophys. Prospect. 53, 497–506 (2005).

    ADS  Google Scholar 

  48. Christiansen, A. V. & Auken, E. A global measure for depth of investigation. Geophysics 77, WB171–WB177 (2012).

    Google Scholar 

  49. Christensen, N. B. Sensitivity functions of transient electromagnetic methods. Geophysics 79, E167–E182 (2014).

    ADS  Google Scholar 

  50. Bhattacharyya, B. & Leu, L. K. Analysis of magnetic anomalies over Yellowstone National Park: mapping of Curie point isothermal surface for geothermal reconnaissance. J. Geophys. Res. 80, 4461–4465 (1975).

    ADS  Google Scholar 

  51. Cordell, L. & Grauch, V. J. S. in The Utility of Regional Gravity and Magnetic Anomaly Maps (ed. Hinze, W. J.) 181–197 (Society of Exploration Geophysicists, 1985).

  52. Revil, A. et al. Induced polarization of volcanic rocks–1. Surface versus quadrature conductivity. Geophys. J. Int. 208, 826–844 (2016).

    ADS  Google Scholar 

  53. Bargar, K. E. & Beeson, M. H. Hydrothermal alteration in research drill hole Y-2, Lower Geyser Basin, Yellowstone National Park, Wyoming. Am. Mineral. 66, 473–490 (1981).

    CAS  Google Scholar 

  54. Bargar, K. E. & Beeson, M. H. Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming. US Geol. Surv. Prof. Pap. 1054-C, C1–C23 (1985).

    Google Scholar 

  55. Bargar, K. E. & Beeson, M. H. Hydrothermal alteration in research drill hole Y-6, Upper Firehole River, Yellowstone National Park, Wyoming. US Geol. Surv. Prof. Pap. 1054-B, B1–B24 (1984).

    Google Scholar 

Download references


We thank B. Minsley for generating Extended Data Fig. 1 and S. Hurwitz and P. Gardner for suggestions that improved this paper. This work was supported by the US Geological Survey Mineral and Energy Resources and Volcanic Hazards Programs, NSF grant no. EPS-1208909 and the University of Wyoming Office of Research and Economic Development. This work was carried out when one of the co-authors, E.A., was a professor in geophysics at Aarhus University. Any use of trade, firm or product names is for descriptive purposes and does not imply endorsement by the US Government.

Author information

Authors and Affiliations



C.A.F., P.A.B., W.S.H. and E.A. initiated the study and designed the AEM survey. C.A.F. modelled the magnetic data. P.A.B. and J.C. modelled the AEM data. C.A.F. and P.A.B. developed the interpretation with contributions from W.S.H., E.A., B.R.B. and J.C. C.A.F. wrote the bulk of the paper with P.A.B., W.S.H. and E.A. contributing.

Corresponding author

Correspondence to Carol A. Finn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks William Gardner, Steven Constable and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Graph of bulk resistivity depending on porosity21,53,54,55 and fluid conductivity26,37.

The stars represent the maximums of measured porosity values21,53,54,55, the highest values of fluid conductivities of groundwater and typical values for thermal fluids. The colors indicate the bulk resistivity values expected in our models (Figs. 2 and 3a) for given porosities and conductivities.

Extended Data Table 1 AEM inversion parameters

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finn, C.A., Bedrosian, P.A., Holbrook, W.S. et al. Geophysical imaging of the Yellowstone hydrothermal plumbing system. Nature 603, 643–647 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing