Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Steady Floquet–Andreev states in graphene Josephson junctions

An Author Correction to this article was published on 10 January 2023

This article has been updated

Abstract

Engineering quantum states through light–matter interaction has created a paradigm in condensed-matter physics. A representative example is the Floquet–Bloch state, which is generated by time-periodically driving the Bloch wavefunctions in crystals. Previous attempts to realize such states in condensed-matter systems have been limited by the transient nature of the Floquet states produced by optical pulses1,2,3, which masks the universal properties of non-equilibrium physics. Here we report the generation of steady Floquet–Andreev states in graphene Josephson junctions by continuous microwave application and direct measurement of their spectra by superconducting tunnelling spectroscopy. We present quantitative analysis of the spectral characteristics of the Floquet–Andreev states while varying the phase difference of the superconductors, the temperature, the microwave frequency and the power. The oscillations of the Floquet–Andreev-state spectrum with phase difference agreed with our theoretical calculations. Moreover, we confirmed the steady nature of the Floquet–Andreev states by establishing a sum rule of tunnelling conductance4, and analysed the spectral density of Floquet states depending on Floquet interaction strength. This study provides a basis for understanding and engineering non-equilibrium quantum states in nanodevices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of Andreev bound state and device geometry.
Fig. 2: Microwave power dependence of F–A states.
Fig. 3: Phase and frequency dependence of Floquet–Bloch states.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding authors upon reasonable request.

Change history

References

  1. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    Article  ADS  CAS  Google Scholar 

  2. Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).

    Article  CAS  Google Scholar 

  3. Mciver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    Article  CAS  Google Scholar 

  4. Uhrig, G. S., Kalthoff, M. H. & Freericks, J. K. Positivity of the spectral densities of retarded Floquet Green functions. Phys. Rev. Lett. 122, 130604 (2019).

    Article  ADS  CAS  Google Scholar 

  5. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  ADS  CAS  Google Scholar 

  6. Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  7. Rudner, M. S. & Lindner, N. H. Band structure engineering and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. 2, 229–244 (2020).

    Article  CAS  Google Scholar 

  8. Jiang, L. et al. Majorana fermions in equilibrium and in driven cold-atom quantum wires. Phys. Rev. Lett. 106, 220402 (2011).

    Article  ADS  Google Scholar 

  9. Bauer, B. et al. Topologically protected braiding in a single wire using Floquet Majorana modes. Phys. Rev. B 100, 041102(R) (2019).

    Article  ADS  Google Scholar 

  10. Clark, L. W. et al. Interacting Floquet polaritons. Nature 571, 532–536 (2019).

    Article  CAS  Google Scholar 

  11. Wintersperger, K. et al. Realization of an anomalous Floquet topological system with ultracold atoms. Nat. Phys. 16, 1058–1063 (2020).

    Article  CAS  Google Scholar 

  12. Freericks, J. K., Krishnamurthy, H. R. & Pruschke, T. Theoretical description of time-resolved photoemission spectroscopy: application to pump-probe experiments. Phys. Rev. Lett. 102, 136401 (2009).

    Article  ADS  CAS  Google Scholar 

  13. D’alessio, L. & Rigol, M. Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4, 041048 (2014).

    Google Scholar 

  14. Abanin, D. A., De Roeck, W., Ho, W. W. & Huveneers, F. Effective Hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017).

    Article  ADS  Google Scholar 

  15. Mori, T., Ikeda, T. N., Kaminishi, E. & Ueda, M. Thermalization and prethermalization in isolated quantum systems: a theoretical overview. J. Phys. B 51, 112001 (2018).

    Article  ADS  Google Scholar 

  16. Ponte, P., Chandran, A., Papić, Z. & Abanin, D. A. Periodically driven ergodic and many-body localized quantum systems. Ann. Phys. 353, 196–204 (2015).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  17. Deng, C., Orgiazzi, J.-L., Shen, F., Ashhab, S. & Lupascu, A. Observation of Floquet states in a strongly driven artificial atom. Phys. Rev. Lett. 115, 133601 (2015).

    Article  ADS  Google Scholar 

  18. Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

    Article  ADS  CAS  Google Scholar 

  19. Koski, J. V. et al. Floquet spectroscopy of a strongly driven quantum dot charge qubit with a microwave resonator. Phys. Rev. Lett. 121, 043603 (2018).

    Article  ADS  CAS  Google Scholar 

  20. Jamali, S. et al. Floquet spin states in OLEDs. Nat. Commun. 12, 465 (2021).

    Article  ADS  CAS  Google Scholar 

  21. Huang, K.-F. et al. Interference of Cooper quartet Andreev bound states in a multi-terminal graphene-based Josephson junction. Preprint at https://arxiv.org/abs/2008.03419 (2020).

  22. Melin, R., Danneau, R., Yang, K., Caputo, J. G. & Doucot, B. Engineering the Floquet spectrum of superconducting multiterminal quantum dots. Phys. Rev. B 100, 035450 (2019).

    Article  ADS  CAS  Google Scholar 

  23. Melin, R., Caputo, J. G., Yang, K. & Doucot, B. Simple Floquet–Wannier–Stark–Andreev viewpoint and emergence of low-energy scales in a voltage-biased three-terminal Josephson junction. Phys. Rev. B 95, 085415 (2017).

    Article  ADS  Google Scholar 

  24. Nichele, F. et al. Relating Andreev bound states and supercurrents in hybrid Josephson junctions. Phys. Rev. Lett. 124, 226801 (2020).

    Article  ADS  CAS  Google Scholar 

  25. Bretheau, L. et al. Tunnelling spectroscopy of Andreev states in graphene. Nat. Phys. 13, 756–760 (2017).

    Article  CAS  Google Scholar 

  26. Pillet, J. D. et al. Andreev bound states in supercurrent-carrying carbon nanotubes revealed. Nat. Phys. 6, 965–969 (2010).

    Article  CAS  Google Scholar 

  27. Giazotto, F., Peltonen, J. T., Meschke, M. & Pekola, J. P. Superconducting quantum interference proximity transistor. Nat. Phys. 6, 254–259 (2010).

    Article  CAS  Google Scholar 

  28. Lee, G.-H., Kim, S., Jhi, S. H. & Lee, H.-J. Ultimately short ballistic vertical graphene Josephson junctions. Nat. Commun. 6, 6181 (2015).

    Article  ADS  CAS  Google Scholar 

  29. Choi, D. H. et al. Van-der-Waals-gap tunneling spectroscopy for single-wall carbon nanotubes. Carbon 113, 237–242 (2017).

    Article  CAS  Google Scholar 

  30. Le Sueur, H., Joyez, P., Pothier, H., Urbina, C. & Esteve, D. Phase controlled superconducting proximity effect probed by tunneling spectroscopy. Phys. Rev. Lett. 100, 197002 (2008).

    Article  ADS  Google Scholar 

  31. Viljas, J. K. & Heikkila, T. T. Electron-phonon heat transfer in monolayer and bilayer graphene. Phys. Rev. B 81, 245454 (2010).

    Article  ADS  Google Scholar 

  32. Walsh, E. D. et al. Graphene-based Josephson-junction single-photon detector. Phys. Rev. Appl. 8, 024022 (2017).

    Article  ADS  Google Scholar 

  33. Tikhonov, K. S., Skvortsov, M. A. & Klapwijk, T. M. Superconductivity in the presence of microwaves: full phase diagram. Phys. Rev. B 97, 184516 (2018).

    Article  ADS  CAS  Google Scholar 

  34. Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

    Article  ADS  Google Scholar 

  35. Dehghani, H., Oka, T. & Mitra, A. Out-of-equilibrium electrons and the Hall conductance of a Floquet topological insulator. Phys. Rev. B 91, 155422 (2015).

    Article  ADS  Google Scholar 

  36. He, Q. L. et al. Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure. Science 357, 294–299 (2017).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  37. Verdeny, A., Puig, J. & Mintert, F. Quasi-periodically driven quantum systems. Z. Naturforsch. A 71, 897–907 (2016).

    Article  ADS  CAS  Google Scholar 

  38. Crowley, P. J. D., Martin, I. & Chandran, A. Topological classification of quasiperiodically driven quantum systems. Phys. Rev. B 99, 064306 (2019).

    Article  ADS  CAS  Google Scholar 

  39. Sentef, M. A. et al. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 6, 7047 (2015).

    Article  ADS  CAS  Google Scholar 

  40. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  CAS  Google Scholar 

  41. Beenakker, C. W. J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337–1354 (2008).

    Article  ADS  CAS  Google Scholar 

  42. Titov, M. & Beenakker, C. W. J. Josephson effect in ballistic graphene. Phys. Rev. B 74, 041401(R) (2006).

    Article  ADS  Google Scholar 

  43. Beenakker, C. W. Specular Andreev reflection in graphene. Phys. Rev. Lett. 97, 067007 (2006).

    Article  ADS  CAS  Google Scholar 

  44. Bardeen, J. Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961).

    Article  ADS  CAS  Google Scholar 

  45. Dynes, R. C., Narayanamurti, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).

    Article  ADS  CAS  Google Scholar 

  46. Semenov, A. V., Devyatov, I. A., De Visser, P. J. & Klapwijk, T. M. Coherent excited states in superconductors due to a microwave field. Phys. Rev. Lett. 117, 047002 (2016).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H.-J. Lee, K. W. Kim, J. C. W. Song, D. Cho, K. C. Fong and C. Lee for reading the manuscript, and C. B. Winkelmann for a discussion about the Tien–Gordon model. S.P., S.J., Y.-B.C. and G.-H.L. acknowledge the support of the Samsung Science and Technology Foundation (project number SSTF-BA1702-05) for device fabrications and low-temperature measurements. W.J. and G.-H.L. acknowledge the support of National Research Foundation of Korea (NRF) funded by the Korean Government (grant numbers 2016R1A5A1008184, 2020R1C1C1013241 and 2020M3H3A1100839 and 2021R1A6A1A10042944) for data analysis. W.L. and G.Y.C. acknowledge the support of the National Research Foundation of Korea (NRF) funded by the Korean Government (grant numbers 2020R1C1C1006048 and 2020R1A4A3079707), as well as grant number IBS-R014-D1. W.L. and G.Y.C. are also supported by the Air Force Office of Scientific Research under award number FA2386-20-1-4029. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, grant number JPMXP0112101001 and JSPS KAKENHI grant number JP20H00354.

Author information

Authors and Affiliations

Authors

Contributions

G.-H.L. and G.Y.C. conceived and supervised the project. S.P. designed and fabricated the devices. T.T. and K.W. provided the hBN crystal. S.P., S.J. and Y.-B.C. performed the measurements. W.L. and G.Y.C. carried out theoretical calculations. S.P., W.L., S.J., J.P., W.J., G.Y.C. and G.-H.L. performed the data analysis. S.P., W.L., S.J., G.Y.C. and G.-H.L. wrote the paper.

Corresponding authors

Correspondence to Gil Young Cho or Gil-Ho Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Romain Danneau, James McIver and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary text, figures, tables, equations and references.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Lee, W., Jang, S. et al. Steady Floquet–Andreev states in graphene Josephson junctions. Nature 603, 421–426 (2022). https://doi.org/10.1038/s41586-021-04364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04364-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing