Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Critical advances and future opportunities in upcycling commodity polymers

Abstract

The vast majority of commodity plastics do not degrade and therefore they permanently pollute the environment. At present, less than 20% of post-consumer plastic waste in developed countries is recycled, predominately for energy recovery or repurposing as lower-value materials by mechanical recycling. Chemical recycling offers an opportunity to revert plastics back to monomers for repolymerization to virgin materials without altering the properties of the material or the economic value of the polymer. For plastic waste that is either cost prohibitive or infeasible to mechanically or chemically recycle, the nascent field of chemical upcycling promises to use chemical or engineering approaches to place plastic waste at the beginning of a new value chain. Here state-of-the-art methods are highlighted for upcycling plastic waste into value-added performance materials, fine chemicals and specialty polymers. By identifying common conceptual approaches, we critically discuss how the advantages and challenges of each approach contribute to the goal of realizing a sustainable plastics economy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Upcycling in the life cycle of plastics and plastic waste.
Fig. 2: Treatment of plastic waste through polymer-to-polymer transformations employing depolymerization–repolymerization methods.
Fig. 3: Treatment of plastic waste through polymer-to-molecule transformations.
Fig. 4: Treatment of waste plastics through polymer-to-material transformations.
Fig. 5: Carbon footprint calculations for three upcycling cases.

Similar content being viewed by others

References

  1. Plastics—The Facts 2019 (PlasticsEurope, 2019).

  2. Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 2–24 (2020). A Review on the different recycling technologies suitable for the reuse or the valorization of plastic wastes in a circular economy perspective.

    Article  Google Scholar 

  3. Lazarevic, D., Aoustin, E., Buclet, N. & Brandt, N. Plastic waste management in the context of a European recycling society: comparing results and uncertainties in a life cycle perspective. Resour. Conserv. Recycl. 55, 246–259 (2010).

    Article  Google Scholar 

  4. Antelava, A. et al. Plastic solid waste (PSW) in the context of life cycle assessment (LCA) and sustainable management. Environ. Manage. 64, 230–244 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. National overview: facts and figures on materials, wastes and recycling. US EPA https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials (2017).

  6. What a Waste?: A Global Review of Solid Waste Management (World Bank, 2012); https://documents.worldbank.org/en/publication/documents-reports/documentdetail/302341468126264791/What-a-waste-a-global-review-of-solid-waste-management.

  7. Ügdüler, S., Van Geem, K. M., Roosen, M., Delbeke, E. I. P. & De Meester, S. Challenges and opportunities of solvent-based additive extraction methods for plastic recycling. Waste Manage. 104, 148–182 (2020).

    Article  Google Scholar 

  8. Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Ellis, L. D. et al. Tandem heterogeneous catalysis for polyethylene depolymerization via an olefin-intermediate process. ACS Sustain. Chem. Eng. 9, 623–628 (2021).

    Article  CAS  Google Scholar 

  10. Ellen Macarthur Foundation. The new plastic economy - catalysing action. https://ellenmacarthurfoundation.org/the-new-plastics-economy-catalysing-action (2018).

  11. Hong, M. & Y.-X. Chen, E. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem. 19, 3692–3706 (2017).

    Article  CAS  Google Scholar 

  12. Schneiderman, D. K. & Hillmyer, M. A. 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50, 3733–3749 (2017). A Perspective summarizing the most important topics for moving to more sustainable polymers: renewable monomers and degradable polymers, the development of chemical recycling strategies, new classes of reprocessable thermosets and the design of advanced catalysts.

    Article  ADS  CAS  Google Scholar 

  13. Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  Google Scholar 

  14. Jehanno, C., Pérez-Madrigal, M. M., Demarteau, J., Sardon, H. & Dove, A. P. Organocatalysis for depolymerisation. Polym. Chem. 10, 172–186 (2018).

    Article  Google Scholar 

  15. Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020). A Review and point of view on the ideal design for chemical recycling to monomer considering thermodynamic and processing issues.

    Article  ADS  CAS  Google Scholar 

  16. Ellis, L. D. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4, 539–556 (2021).

    Article  CAS  Google Scholar 

  17. Pauli, G. & Hartkemeyer, J. F. UpCycling (Chronik Verlag im Bertelsmann LEXIKON Verlag, 1999).

  18. Eriksen, M. K., Damgaard, A., Boldrin, A. & Astrup, T. F. Quality assessment and circularity potential of recovery systems for household plastic waste. J. Ind. Ecol. 23, 156–168 (2019).

    Article  Google Scholar 

  19. Vadenbo, C., Hellweg, S. & Astrup, T. F. Let’s be clear(er) about substitution: a reporting framework to account for product displacement in life cycle assessment. J. Ind. Ecol. 21, 1078–1089 (2017).

    Article  Google Scholar 

  20. Geyer, B., Röhner, S., Lorenz, G. & Kandelbauer, A. Designing oligomeric ethylene terephtalate building blocks by chemical recycling of polyethylene terephtalate. J. Appl. Polym. Sci. 131, 39786–39798 (2014).

    Article  Google Scholar 

  21. Kathalewar, M. et al. Chemical recycling of PET using neopentyl glycol: reaction kinetics and preparation of polyurethane coatings. Prog. Org. Coat. 76, 147–156 (2013).

    Article  CAS  Google Scholar 

  22. Roy, P. K., Mathur, R., Kumar, D. & Rajagopal, C. Tertiary recycling of poly(ethylene terephthalate) wastes for production of polyurethane–polyisocyanurate foams. J. Environ. Chem. Eng. 1, 1062–1069 (2013).

    Article  CAS  Google Scholar 

  23. Rorrer, N. A. et al. Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 3, 1006–1027 (2019). Recyclates from PET and bio-derived monomers recombined into fibreglass reinforced plastic resulting into an upcycled material with a lower production of energy and greenhouse gas emissions.

    Article  CAS  Google Scholar 

  24. Kim, J. G. Chemical recycling of poly(bisphenol A carbonate). Polym. Chem. 11, 1830–4849 (2020).

    Article  Google Scholar 

  25. Jones, G. O., Yuen, A., Wojtecki, R. J., Hedrick, J. L. & García, J. M. Computational and experimental investigations of one-step conversion of poly(carbonate)s into value-added poly(aryl ether sulfone)s. Proc. Natl Acad. Sci. USA 113, 7722–7726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pang, C. et al. Sustainable polycarbonates from a citric acid-based rigid diol and recycled BPA-PC: from synthesis to properties. ACS Sustain. Chem. Eng. 6, 17059–17067 (2018). The synthesis of innovative amorphous polycarbonates based on a bicyclic diol from naturally occurring citric acid derivatives and recyclates of BPA-PC wastes through melt polycondensation.

    Article  CAS  Google Scholar 

  27. Saito, K. et al. From plastic waste to polymer electrolytes for batteries through chemical upcycling of polycarbonate. J. Mater. Chem. A 8, 13921–13926 (2020).

    Article  CAS  Google Scholar 

  28. Wu, C.-H., Chen, L.-Y., Jeng, R.-J. & Dai, S. A. 100% atom-economy efficiency of recycling polycarbonate into versatile intermediates. ACS Sustain. Chem. Eng. 6, 8964–8975 (2018).

    Article  CAS  Google Scholar 

  29. Sohn, Y. J. et al. Recent advances in sustainable plastic upcycling and biopolymers. Biotechnol. J. 15, 1900489 (2020).

    Article  CAS  Google Scholar 

  30. Kenny, S. T. et al. Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Appl. Microbiol. Biotechnol. 95, 623–633 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Kenny, S. T. et al. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environ. Sci. Technol. 42, 7696–7701 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Tiso, T. et al. Towards bio-upcycling of polyethylene terephthalate. Metab. Eng. 66, 167–178 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Ward, P. G., Goff, M., Donner, M., Kaminsky, W. & O’Connor, K. E. A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ. Sci. Technol. 40, 2433–2437 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Wei, R. et al. Possibilities and limitations of biotechnological plastic degradation and recycling. Nat. Catal. 3, 867–871 (2020).

    Article  CAS  Google Scholar 

  35. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Williamson, J. B., Lewis, S. E., Johnson, R. R. III, Manning, I. M. & Leibfarth, F. A. C−H functionalization of commodity polymers. Angew. Chem. Int. Ed. 58, 8654–8668 (2019).

    Article  CAS  Google Scholar 

  37. Kondo, Y. et al. Rhodium-catalyzed, regiospecific functionalization of polyolefins in the melt. J. Am. Chem. Soc. 124, 1164–1165 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Bae, C. et al. Regiospecific side-chain functionalization of linear low-density polyethylene with polar groups. Angew. Chem. Int. Ed. 44, 6410–6413 (2005).

    Article  CAS  Google Scholar 

  39. Bae, C. et al. Catalytic hydroxylation of polypropylenes. J. Am. Chem. Soc. 127, 767–776 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Williamson, J. B., Czaplyski, W. L., Alexanian, E. J. & Leibfarth, F. A. Regioselective C−H xanthylation as a platform for polyolefin functionalization. Angew. Chem. Int. Ed. 57, 6261–6265 (2018).

    Article  CAS  Google Scholar 

  41. Williamson, J. B. et al. Chemo- and regioselective functionalization of isotactic polypropylene: a mechanistic and structure–property study. J. Am. Chem. Soc. 141, 12815–12823 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. M. Plummer, C., Li, L. & Chen, Y. The post-modification of polyolefins with emerging synthetic methods. Polym. Chem. 11, 6862–6872 (2020).

    Article  Google Scholar 

  43. Fakezas, T. J. et al. Diversification of aliphatic C–H bonds in small molecules and polyolefins through radical chain transfer. Science 375, 545–550 (2022).

  44. Chen, L. et al. Selective, catalytic oxidations of C–H bonds in polyethylenes produce functional materials with enhanced adhesion. Chem 7, 137–145 (2021). Selective functionalization of polyethylene through ruthenium-catalysed oxidation of C–H bonds for the synthesis of processable and adhesive materials.

    Article  CAS  Google Scholar 

  45. Röttger, M. et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 356, 62–65 (2017).

    Article  ADS  PubMed  Google Scholar 

  46. Easterling, C. P., Kubo, T., Orr, Z. M., Fanucci, G. E. & Sumerlin, B. S. Synthetic upcycling of polyacrylates through organocatalyzed post-polymerization modification. Chem. Sci. 8, 7705–7709 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lewis, S. E., Wilhelmy, B. E. & Leibfarth, F. A. Organocatalytic C–H fluoroalkylation of commodity polymers. Polym. Chem. https://doi.org/10.1039/C9PY01884K (2020).

  48. Lewis, S. E., Wilhelmy, B. E. & Leibfarth, F. A. Upcycling aromatic polymers through C–H fluoroalkylation. Chem. Sci. 10, 6270–6277 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sharma, P., Lochab, B., Kumar, D. & Roy, P. K. Sustainable bis-benzoxazines from cardanol and PET-derived terephthalamides. ACS Sustain. Chem. Eng. 4, 1085–1093 (2016).

    Article  CAS  Google Scholar 

  50. Tan, J. P. K. et al. Upcycling poly(ethylene terephthalate) refuse to advanced therapeutics for the treatment of nosocomial and mycobacterial infections. Macromolecules 52, 7878–7885 (2019).

    Article  ADS  CAS  Google Scholar 

  51. Fukushima, K. et al. Supramolecular high-aspect ratio assemblies with strong antifungal activity. Nat. Commun. 4, 2861 (2013).

    Article  ADS  PubMed  Google Scholar 

  52. Fukushima, K. et al. Advanced chemical recycling of poly(ethylene terephthalate) through organocatalytic aminolysis. Polym. Chem. 4, 1610–1616 (2013).

    Article  CAS  Google Scholar 

  53. Fukushima, K. et al. Broad-spectrum antimicrobial supramolecular assemblies with distinctive size and shape. ACS Nano 6, 9191–9199 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Demarteau, J., O’Harra, K. E., Bara, J. E. & Sardon, H. Valorization of plastic wastes for the synthesis of imidazolium-based self-supported elastomeric ionenes. ChemSusChem 13, 3122–3126 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Kammakakam, I., O’Harra, K. E., Dennis, G. P., Jackson, E. M. & Bara, J. E. Self-healing imidazolium-based ionene-polyamide membranes: an experimental study on physical and gas transport properties. Polym. Int. 68, 1123–1129 (2019).

    Article  CAS  Google Scholar 

  56. Iannone, F. et al. Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. J. Mol. Catal. A 426, 107–116 (2017).

    Article  CAS  Google Scholar 

  57. Do, T., Baral, E. R. & Kim, J. G. Chemical recycling of poly(bisphenol A carbonate): 1,5,7-triazabicyclo[4.4.0]-dec-5-ene catalyzed alcoholysis for highly efficient bisphenol A and organic carbonate recovery. Polymer 143, 106–114 (2018).

    Article  CAS  Google Scholar 

  58. Jehanno, C. et al. Synthesis of functionalized cyclic carbonates through commodity polymer upcycling. ACS Macro Lett. 9, 443–447 (2020). Selective upcycling of BPA-PC wastes into functionalized six-member cyclic carbonates through an organocatalysed-mediated depolymerization.

    Article  CAS  Google Scholar 

  59. Tempelaar, S., Mespouille, L., Coulembier, O., Dubois, P. & P. Dove, A. Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation. Chem. Soc. Rev. 42, 1312–1336 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Sardon, H. et al. Synthesis of polyurethanes using organocatalysis: a perspective. Macromolecules 48, 3153–3165 (2015).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  61. Westhues, S., Idel, J. & Klankermayer, J. Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts. Sci. Adv. 4, eaat9669 (2018). Catalytic depolymerization of polyesters and polycarbonates through a ruthenium catalyst-mediated hydrogenolysis, paving the way to innovative and sustainable recycling strategies.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Monsigny, L., Berthet, J.-C. & Cantat, T. Depolymerization of waste plastics to monomers and chemicals using a hydrosilylation strategy facilitated by Brookhart’s iridium(III) catalyst. ACS Sustain. Chem. Eng. 6, 10481–10488 (2018).

    Article  CAS  Google Scholar 

  63. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

  64. Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Kim, H. T. et al. Biological valorization of poly(ethylene terephthalate) monomers for upcycling waste PET. ACS Sustain. Chem. Eng. 7, 19396–19406 (2019).

    Article  CAS  Google Scholar 

  66. Additive Manufacturing Market Size: Industry Report, 2020–2025 https://www.knowledge-sourcing.com/report/additive-manufacturing-market (Knowledge Sourcing Intelligence LLP, 2021).

  67. Bäckström, E., Odelius, K. & Hakkarainen, M. Trash to treasure: microwave-assisted conversion of polyethylene to functional chemicals. Ind. Eng. Chem. Res. 56, 14814–14821 (2017).

    Article  Google Scholar 

  68. Bäckström, E., Odelius, K. & Hakkarainen, M. Designed from recycled: turning polyethylene waste to covalently attached polylactide plasticizers. ACS Sustain. Chem. Eng. 7, 11004–11013 (2019). Microwave-assisted oxidative degradation of LDPE waste into functional chemicals (glutaric, succinic and adipic acids) for the subsequent synthesis of PLA plasticizer.

    Article  Google Scholar 

  69. Mouawia, A., Nourry, A., Gaumont, A.-C., Pilard, J.-F. & Dez, I. Controlled metathetic depolymerization of natural rubber in ionic liquids: from waste tires to telechelic polyisoprene oligomers. ACS Sustain. Chem. Eng. 5, 696–700 (2017).

    Article  CAS  Google Scholar 

  70. Zhang, J., Yan, B., Wan, S. & Kong, Q. Converting polyethylene waste into large scale one-dimensional Fe3O4@C composites by a facile one-pot process. Ind. Eng. Chem. Res. 52, 5708–5712 (2013).

    Article  CAS  Google Scholar 

  71. Gong, J. et al. Upcycling waste polypropylene into graphene flakes on organically modified montmorillonite. Ind. Eng. Chem. Res. 53, 4173–4181 (2014).

    Article  CAS  Google Scholar 

  72. Yang, R.-X., Chuang, K.-H. & Wey, M.-Y. Effects of nickel species on Ni/Al2O3 catalysts in carbon nanotube and hydrogen production by waste plastic gasification: bench- and pilot-scale tests. Energy Fuels 29, 8178–8187 (2015).

    Article  CAS  Google Scholar 

  73. Zhao, D., Wang, X., Miller, J. B. & Huber, G. W. The chemistry and kinetics of polyethylene pyrolysis: a process to produce fuels and chemicals. ChemSusChem 13, 1764–1774 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Zhuo, C. & Levendis, Y. A. Upcycling waste plastics into carbon nanomaterials: a review. J. Appl. Polym. Sci. https://doi.org/10.1002/app.39931 (2014).

  75. Gong, J., Chen, X. & Tang, T. Recent progress in controlled carbonization of (waste) polymers. Prog. Polym. Sci. 94, 1–32 (2019).

    Article  CAS  Google Scholar 

  76. Gong, J. et al. Converting mixed plastics into mesoporous hollow carbon spheres with controllable diameter. Appl. Catal. B 152–153, 289–299 (2014).

    Article  Google Scholar 

  77. Villagómez-Salas, S., Manikandan, P., Acuña Guzmán, S. F. & Pol, V. G. Amorphous carbon chips Li-ion battery anodes produced through polyethylene waste upcycling. ACS Omega 3, 17520–17527 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kim, P. J., Fontecha, H. D., Kim, K. & Pol, V. G. Toward high-performance lithium–sulfur batteries: upcycling of LDPE plastic into sulfonated carbon scaffold via microwave-promoted sulfonation. ACS Appl. Mater. Interfaces 10, 14827–14834 (2018). Preparation of highly porous sulfonated materials from microwave-promoted sulfonation of LDPE wastes.

    Article  CAS  PubMed  Google Scholar 

  79. Mohamed, H. H., Alsanea, A. A., Alomair, N. A., Akhtar, S. & Bahnemann, D. W. ZnO@ porous graphite nanocomposite from waste for superior photocatalytic activity. Environ. Sci. Pollut. Res. 26, 12288–12301 (2019).

    Article  CAS  Google Scholar 

  80. Ko, S., Kwon, Y. J., Lee, J. U. & Jeon, Y.-P. Preparation of synthetic graphite from waste PET plastic. J. Ind. Eng. Chem. 83, 449–458 (2019).

    Article  Google Scholar 

  81. Koning, C., Van Duin, M., Pagnoulle, C. & Jerome, R. Strategies for compatibilization of polymer blends. Prog. Polym. Sci. 23, 707–757 (1998).

    Article  CAS  Google Scholar 

  82. Feldman, D. Polyblend compatibilization. J. Macromol. Sci. A 42, 587–605 (2005).

    Article  Google Scholar 

  83. Nechifor, M., Tanasă, F., Teacă, C.-A. & Zănoagă, M. Compatibilization strategies toward new polymer materials from re-/up-cycled plastics. Int. J. Polym. Anal. Charact. 23, 740–757 (2018).

    Article  CAS  Google Scholar 

  84. Santana, R. M. C. & Manrich, S. Studies on morphology and mechanical properties of PP/HIPS blends from postconsumer plastic waste. J. Appl. Polym. Sci. 87, 747–751 (2003).

    Article  Google Scholar 

  85. Equiza, N., Yave, W., Quijada, R. & Yazdani‐Pedram, M. Use of SEBS/EPR and SBR/EPR as binary compatibilizers for PE/PP/PS/HIPS blends: a work oriented to the recycling of thermoplastic wastes. Macromol. Mater. Eng. 292, 1001–1011 (2007).

    Article  CAS  Google Scholar 

  86. Pracella, M., Rolla, L., Chionna, D. & Galeski, A. Compatibilization and properties of poly(ethylene terephthalate)/polyethylene blends based on recycled materials. Macromol. Chem. Phys. 203, 1473–1485 (2002).

    Article  CAS  Google Scholar 

  87. Pawlak, A., Morawiec, J., Pazzagli, F., Pracella, M. & Galeski, A. Recycling of postconsumer poly(ethylene terephthalate) and high-density polyethylene by compatibilized blending. J. Appl. Polym. Sci. 86, 1473–1485 (2002).

    Article  CAS  Google Scholar 

  88. Ragaert, K., Delva, L. & Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manage. 69, 24–58 (2017).

    Article  CAS  Google Scholar 

  89. Eagan, J. M. et al. Combining polyethylene and polypropylene: enhanced performance with PE/iPP multiblock polymers. Science 355, 814–816 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Xu, J. et al. Compatibilization of isotactic polypropylene (iPP) and high-density polyethylene (HDPE) with iPP–PE multiblock copolymers. Macromolecules 51, 8585–8596 (2018).

    Article  ADS  CAS  Google Scholar 

  91. Washiyama, J., Kramer, E. J. & Hui, C. Y. Fracture mechanisms of polymer interfaces reinforced with block copolymers: transition from chain pullout to crazing. Macromolecules 26, 2928–2934 (1993).

    Article  ADS  CAS  Google Scholar 

  92. Galloway, J. A., Jeon, H. K., Bell, J. R. & Macosko, C. W. Block copolymer compatibilization of cocontinuous polymer blends. Polymer 46, 183–191 (2005).

    Article  CAS  Google Scholar 

  93. Macosko, C. W., Jeon, H. K. & Hoye, T. R. Reactions at polymer–polymer interfaces for blend compatibilization. Prog. Polym. Sci. 30, 939–947 (2005).

    Article  CAS  Google Scholar 

  94. Sundararaj, U. & Macosko, C. W. Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28, 2647–2657 (1995).

    Article  ADS  CAS  Google Scholar 

  95. Saleem, M. & Baker, W. E. In situ reactive compatibilization in polymer blends: effects of functional group concentrations. J. Appl. Polym. Sci. 39, 655–678 (1990).

    Article  CAS  Google Scholar 

  96. Hettema, R., Pasman, J. & Janssen, L. P. B. M. Reactive extrusion of recycled bottle waste material. Polym. Eng. Sci. 42, 665–680 (2002).

    Article  CAS  Google Scholar 

  97. Hlavatá, D., Kruliš, Z., Horák, Z., Lednický, F. & Hromádková, J. The role of lubricants in reactive compatibilization of polyolefin blends. Macromol. Symp. 176, 93–106 (2001).

    Article  Google Scholar 

  98. Ghose, A., Pizzol, M. & McLaren, S. J. Consequential LCA modelling of building refurbishment in New Zealand-—an evaluation of resource and waste management scenarios. J. Clean. Prod. 165, 119–133 (2017).

    Article  Google Scholar 

  99. Buyle, M., Galle, W., Debacker, W. & Audenaert, A. Sustainability assessment of circular building alternatives: consequential LCA and LCC for internal wall assemblies as a case study in a Belgian context. J. Clean. Prod. 218, 141–156 (2019).

    Article  Google Scholar 

  100. Prosman, E. J. & Sacchi, R. New environmental supplier selection criteria for circular supply chains: lessons from a consequential LCA study on waste recovery. J. Clean. Prod. 172, 2782–2792 (2018).

    Article  Google Scholar 

  101. Civancik-Uslu, D. et al. Moving from linear to circular household plastic packaging in Belgium: prospective life cycle assessment of mechanical and thermochemical recycling. Resour. Conserv. Recycl. 171, 105633 (2021).

    Article  Google Scholar 

  102. De Meester, S., Nachtergaele, P., Debaveye, S., Vos, P. & Dewulf, J. Using material flow analysis and life cycle assessment in decision support: a case study on WEEE valorization in Belgium. Resour. Conserv. Recycl. 142, 1–9 (2019).

    Article  Google Scholar 

  103. Moraga, G. et al. Circular economy indicators: What do they measure? Resour. Conserv. Recycl. 146, 452–461 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Britt, P. et al. Report of the Basic Energy Sciences Roundtable on Chemical Upcycling of Polymers (2019).

  105. Plastic upcycling. Nat. Catal. 2, 945–946 (2019).

  106. Shi, C. et al. Design principles for intrinsically circular polymers with tunable properties. Chem. 7, 2896–2912 (2021)

  107. Liu, X., Hong, M., Falivene, L., Cavallo, L. & Chen, E. Y.-X. Closed-loop polymer upcycling by installing property-enhancing comonomer sequences and recyclability. Macromolecules 52, 4570–4578 (2019).

    Article  ADS  CAS  Google Scholar 

  108. Christensen, P. R., Scheuermann, A. M., Loeffler, K. E. & Helms, B. A. Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11, 442 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Science to Enable Sustainable Plastics https://www.rsc.org/globalassets/22-new-perspectives/sustainability/progressive-plastics/c19_tl_sustainability_cs3_whitepaper_a4_web_final.pdf (Royal Society of Chemistry, 2020).

  110. Anastas, P. T. & Warner, J. C. In Green Chemistry: Theory and Practice 30 (Univ. Press, 1998).

  111. Anastas, P. T. & Zimmerman, J. B. Design through the 12 principles of green engineering. Environ. Sci. Technol. 37, 94A–101A (2003).

    Article  ADS  PubMed  Google Scholar 

  112. Nicholson, S. R., Rorrer, N. A., Carpenter, A. C. & Beckham, G. T. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5, 673–686 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.J. and H.S. thank the Spanish Ministry for the excellence Grant POLYCE and the Basque University for the EHUrOPE grant. F.A.L. and J.W.A. acknowledge support from the Air Force Office of Scientific Research award number 17RT0487 under the Young Investigator Program. S.D.M. and M.R. acknowledge support from VLAIO and the Catalisti Moonshot programme through the PREFER project (The plastics refinery: No more waste - HBC20202609) and the European Regional Development Fund (ERDF) via the PSYCHE project (Interreg France-Wallonie-Vlaanderen) with co-financing from the provinces of East-Flanders and West-Flanders. E.Y.-X.C. acknowledges support from the BOTTLE Consortium funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office and Bioenergy Technologies Office under contract number DE-AC36-08GO28308 with the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy. A.P.D. acknowledges the financial support from the University of Birmingham.

Author information

Authors and Affiliations

Authors

Contributions

C.J. and J.W.A. wrote the initial manuscript under the supervision of and with contributions from H.S. and F.A.L. S.D.M. and M.R. performed the calculations for the quantification of carbon footprint and wrote the ‘Quantifying the sustainability of upcycling’ section. All authors have contributed to the discussion of the content and have revised and edited the manuscript. C.J. realized the figures.

Corresponding authors

Correspondence to Steven De Meester, Frank A. Leibfarth or Haritz Sardon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Edward Kosior, Tomonori Saito and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Information, including Supplementary Figs. 1–6, Tables 1–3 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jehanno, C., Alty, J.W., Roosen, M. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022). https://doi.org/10.1038/s41586-021-04350-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04350-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing