Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resolving the gravitational redshift across a millimetre-scale atomic sample

Abstract

Einstein’s theory of general relativity states that clocks at different gravitational potentials tick at different rates relative to lab coordinates—an effect known as the gravitational redshift1. As fundamental probes of space and time, atomic clocks have long served to test this prediction at distance scales from 30 centimetres to thousands of kilometres2,3,4. Ultimately, clocks will enable the study of the union of general relativity and quantum mechanics once they become sensitive to the finite wavefunction of quantum objects oscillating in curved space-time. Towards this regime, we measure a linear frequency gradient consistent with the gravitational redshift within a single millimetre-scale sample of ultracold strontium. Our result is enabled by improving the fractional frequency measurement uncertainty by more than a factor of 10, now reaching 7.6 × 10−21. This heralds a new regime of clock operation necessitating intra-sample corrections for gravitational perturbations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental system and quantum state control.
Fig. 2: Atomic coherence.
Fig. 3: Evaluating frequency gradients.
Fig. 4: In situ synchronous clock comparison.

Similar content being viewed by others

Data availability

The experimental data are available from the corresponding authors upon reasonable request.

Code availability

The code used for the analysis is available from the corresponding authors upon reasonable request.

References

  1. Einstein, A. Grundgedanken der allgemeinen Relativitätstheorie und Anwendung dieser Theorie in der Astronomie. Preuss. Akad. der Wissenschaften, Sitzungsberichte 315, 778–786 (1915).

  2. Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Herrmann, S. et al. Test of the gravitational redshift with Galileo satellites in an eccentric orbit. Phys. Rev. Lett. 121, 231102 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Delva, P. et al. Gravitational redshift test using eccentric Galileo satellites. Phys. Rev. Lett. 121, 231101 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    Article  ADS  CAS  Google Scholar 

  7. Nicholson, T. et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Commun. 6, 6896 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Brewer, S. M. et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 123, 33201 (2019).

    Article  ADS  CAS  Google Scholar 

  10. Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia 56, 065004 (2019).

    Article  ADS  CAS  Google Scholar 

  11. Marti, G. E. et al. Imaging optical frequencies with 100 μHz precision and 1.1 μm resolution. Phys. Rev. Lett. 120, 103201 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    Article  ADS  PubMed  Google Scholar 

  13. Kaubruegger, R. et al. Variational spin-squeezing algorithms on programmable quantum sensors. Phys. Rev. Lett. 123, 260505 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Kómár, P. et al. Quantum network of atom clocks: a possible implementation with neutral atoms. Phys. Rev. Lett. 117, 060506 (2016).

    Article  ADS  PubMed  Google Scholar 

  15. Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 25008 (2018).

    Article  MathSciNet  CAS  Google Scholar 

  17. Sanner, C. et al. Optical clock comparison for Lorentz symmetry testing. Nature 567, 204–208 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kennedy, C. J. et al. Precision metrology meets cosmology: improved constraints on ultralight dark matter from atom-cavity frequency comparisons. Phys. Rev. Lett. 125, 201302 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Boulder Atomic Clock Optical Network. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591, 564–569 (2021).

    Article  ADS  Google Scholar 

  20. Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D 94, 124043 (2016).

    Article  ADS  Google Scholar 

  21. Hafele, J. C. & Keating, R. E. Around-the-world atomic clocks. Science 177, 166 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 14, 411–415 (2020).

    Article  ADS  CAS  Google Scholar 

  23. Laurent, P., Massonnet, D., Cacciapuoti, L. & Salomon, C. The ACES/PHARAO space mission. C. R. Phys. 16, 540–552 (2015).

    Article  CAS  Google Scholar 

  24. Tino, G. M. et al. SAGE: a proposal for a space atomic gravity explorer. Eur. Phys. J. D 73, 228 (2019).

    Article  ADS  CAS  Google Scholar 

  25. Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14, 437–441 (2018).

    Article  CAS  Google Scholar 

  26. Flechtner, F., Sneeuw, N. & Schuh, W.-D. (eds) Observation of the System Earth from Space: CHAMP, GRACE, GOCE and Future Missions (Springer, 2014).

  27. Kolkowitz, S. et al. Spin–orbit-coupled fermions in an optical lattice clock. Nature 542, 66–70 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Bromley, S. L. et al. Dynamics of interacting fermions under spin–orbit coupling in an optical lattice clock. Nat. Phys. 14, 399–404 (2018).

    Article  CAS  Google Scholar 

  29. Wilkinson, S. R., Bharucha, C. F., Madison, K. W., Niu, Q. & Raizen, M. G. Observation of atomic Wannier–Stark ladders in an accelerating optical potential. Phys. Rev. Lett. 76, 4512–4515 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Lemonde, P. & Wolf, P. Optical lattice clock with atoms confined in a shallow trap. Phys. Rev. A 72, 1–8 (2005).

    Article  Google Scholar 

  31. Aeppli, A. et al. Hamiltonian engineering of spin-orbit coupled fermions in a Wannier-Stark optical lattice clock. Preprint at https://arxiv.org/abs/2201.05909 (2022).

  32. Muniz, J. A., Young, D. J., Cline, J. R. K. & Thompson, J. K. Cavity-QED measurements of the 87Sr millihertz optical clock transition and determination of its natural linewidth. Phys. Rev. Res. 3, 023152 (2021).

    Article  CAS  Google Scholar 

  33. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  CAS  Google Scholar 

  34. Zheng, X. et al. Differential clock comparisons with a multiplexed optical lattice clock. Nature https://doi.org/10.1038/s41586-021-04344-y (2022).

  35. Matei, D. G. et al. 1.5 µm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Lemonde, P., Brusch, A., Targat, R. L., Baillard, X. & Fouche, M. Hyperpolarizability effects in a Sr optical lattice clock. Phys. Rev. Lett. 96, 103003 (2006).

    Article  ADS  PubMed  Google Scholar 

  37. Lodewyck, J., Zawada, M., Lorini, L., Gurov, M. & Lemonde, P. Observation and cancellation of a perturbing dc Stark shift in strontium optical lattice clocks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 411–415 (2012).

    Article  PubMed  Google Scholar 

  38. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  ADS  CAS  Google Scholar 

  39. Boyd, M. M. et al. Nuclear spin effects in optical lattice clocks. Phys. Rev. A 76, 022510 (2007).

    Article  ADS  Google Scholar 

  40. Martin, M. J. et al. A quantum many-body spin system in an optical lattice clock. Science 341, 632–636 (2013).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  41. Ushijima, I. et al. Operational magic intensity for Sr optical lattice clocks. Phys. Rev. Lett. 121, 263202 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. van Westrum, D. Geodetic Survey of NIST and JILA Clock Laboratories, Boulder, Colorado (NOAA, 2019).

Download references

Acknowledgements

We acknowledge funding support from the Defense Advanced Research Projects Agency, National Science Foundation QLCI OMA-2016244, the DOE Quantum System Accelerator, the National Institute of Standards and Technology, National Science Foundation Phys-1734006 and the Air Force Office for Scientific Research. We are grateful for theory insight from A. Chu, P. He and A. M. Rey. We acknowledge J. Zaris, J. Uhrich, J. Meyer, R. Hutson, C. Sanner, W. Milner, L. Sonderhouse, L. Yan, M. Miklos, Y. M. Tso and S. Kolkowitz for stimulating discussions and technical contributions. We thank J. Thompson, C. Regal, J. Hall and S. Haroche for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to carrying out the experiments, interpreting the results and writing the manuscript.

Corresponding authors

Correspondence to Tobias Bothwell or Jun Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Table 1 Gradient Systematic Budget

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bothwell, T., Kennedy, C.J., Aeppli, A. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022). https://doi.org/10.1038/s41586-021-04349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04349-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing