Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

AGN as potential factories for eccentric black hole mergers

Abstract

There is some weak evidence that the black hole merger named GW190521 had a non-zero eccentricity1,2. In addition, the masses of the component black holes exceeded the limit predicted by stellar evolution3. The large masses can be explained by successive mergers4,5, which may be efficient in gas disks surrounding active galactic nuclei, but it is difficult to maintain an eccentric orbit all the way to the merger, as basic physics would argue for circularization6. Here we show that active galactic nuclei disk environments can lead to an excess of eccentric mergers, if the interactions between single and binary black holes are frequent5 and occur with mutual inclinations of less than a few degrees. We further illustrate that this eccentric population has a different distribution of the inclination between the spin vectors of the black holes and their orbital angular momentum at merger7, referred to as the spin–orbit tilt, compared with the remaining circular mergers.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Illustration of an eccentric LIGO-Virgo source forming in an AGN disk.
Fig. 2: Merger probability.
Fig. 3: Dependence on orbital inclination.
Fig. 4: Distribution of orbital plane orientations.
Fig. 5: Eccentricity and gravitational-wave frequency distributions.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

Code availability

Requests for codes should be addressed to the corresponding author.

References

  1. Gayathri, V. et al. Eccentricity estimate for black hole mergers with numerical relativity simulations. Nat. Astron. https://doi.org/10.1038/s41550-021-01568-w (2022).

  2. Romero-Shaw, I., Lasky, P. D., Thrane, E. & Calderón Bustillo, J. GW190521: orbital eccentricity and signatures of dynamical formation in a binary black hole merger signal. Astrophys. J. Lett. 903, L5 (2020).

    ADS  CAS  Article  Google Scholar 

  3. Abbott, R. et al. Properties and astrophysical implications of the 150M binary black hole merger GW190521. Astrophys. J. Lett. 900, L13 (2020).

    ADS  CAS  Article  Google Scholar 

  4. Yang, Y. et al. Hierarchical black hole mergers in active galactic nuclei. Phys. Rev. Lett. 123, 181101 (2019).

    ADS  CAS  Article  Google Scholar 

  5. Tagawa, H., Haiman, Z. & Kocsis, B. Formation and evolution of compact-object binaries in AGN disks. Astrophys. J. 898, 25 (2020).

    ADS  CAS  Article  Google Scholar 

  6. Peters, P. Gravitational radiation and the motion of two point masses. Phys. Rev. 136, B1224–B1232 (1964).

    ADS  Article  Google Scholar 

  7. Abbott, R. et al. GW190521: a binary black hole merger with a total mass of 150 M. Phys. Rev. Lett. 125, 101102 (2020).

    ADS  CAS  Article  Google Scholar 

  8. Bartos, I., Kocsis, B., Haiman, Z. & Márka, S. Rapid and bright stellar-mass binary black hole mergers in active galactic nuclei. Astrophys. J. 835, 165 (2017).

    ADS  Article  Google Scholar 

  9. Levin, Y. Formation of massive stars and black holes in self-gravitating AGN discs, and gravitational waves in LISA band. Preprint at https://arxiv.org/abs/astro-ph/0307084 (2003).

  10. Stone, N. C., Metzger, B. D. & Haiman, Z. Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’. Mon. Not. R. Astron. Soc. 464, 946–954 (2017).

    ADS  CAS  Article  Google Scholar 

  11. Cantiello, M., Jermyn, A. S. & Lin, D. N. C. Stellar evolution in AGN disks. Astrophys. J. 910, 94 (2021).

    ADS  CAS  Article  Google Scholar 

  12. McKernan, B., Ford, K. E. S., Lyra, W. & Perets, H. B. Intermediate mass black holes in AGN discs–I. Production and growth. Mon. Not. R. Astron. Soc. 425, 460–469 (2012).

    ADS  Article  Google Scholar 

  13. McKernan, B. et al. Constraining stellar-mass black hole mergers in AGN disks detectable with LIGO. Astrophys. J. 866, 66 (2018).

    ADS  Article  Google Scholar 

  14. Leigh, N. W. C. et al. On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening. Mon. Not. R. Astron. Soc. 474, 5672–5683 (2018).

    ADS  CAS  Article  Google Scholar 

  15. Secunda, A. et al. Orbital migration of interacting stellar mass black holes in disks around supermassive black holes. Astrophys. J. 878, 85 (2019).

    ADS  Article  Google Scholar 

  16. Tagawa, H., Haiman, Z., Bartos, I. & Kocsis, B. Spin evolution of stellar-mass black hole binaries in active galactic nuclei. Astrophys. J. 899, 26 (2020).

    ADS  Article  Google Scholar 

  17. Kocsis, B., Gáspár, M. E. & Márka, S. Detection rate estimates of gravity waves emitted during parabolic encounters of stellar black holes in globular clusters. Astrophys. J. 648, 411–429 (2006).

    ADS  CAS  Article  Google Scholar 

  18. Rodriguez, C. L. et al. Post-Newtonian dynamics in dense star clusters: formation, masses, and merger rates of highly-eccentric black hole binaries. Phys. Rev. D 98, 123005 (2018).

    ADS  CAS  Article  Google Scholar 

  19. Samsing, J. Eccentric black hole mergers forming in globular clusters. Phys. Rev. D 97, 103014 (2018).

    ADS  CAS  Article  Google Scholar 

  20. Graham, M. J. et al. Candidate electromagnetic counterpart to the binary black hole merger gravitational-wave event S190521g. Phys. Rev. Lett. 124, 251102 (2020).

    ADS  CAS  Article  Google Scholar 

  21. Blanchet, L. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17, 2 (2014).

    ADS  Article  Google Scholar 

  22. Samsing, J. & D’Orazio, D. J. Black hole mergers from globular clusters observable by LISA I: eccentric sources originating from relativistic N-body dynamics. Mon. Not. R. Astron. Soc. 481, 5445–5450 (2018).

    ADS  CAS  Article  Google Scholar 

  23. Monaghan, J. J. A statistical theory of the disruption of three-body systems — II. High angular momentum. Mon. Not. R. Astron. Soc. 177, 583–594 (1976).

    ADS  Article  Google Scholar 

  24. Valtonen, M. & Karttunen, H. The Three-Body Problem (Cambridge Univ. Press, 2006).

  25. Stone, N. C. & Leigh, N. W. C. A statistical solution to the chaotic, non-hierarchical three-body problem. Nature 576, 406–410 (2019).

    ADS  CAS  Article  Google Scholar 

  26. Thompson, T. A., Quataert, E. & Murray, N. Radiation pressure-supported starburst disks and active galactic nucleus fueling. Astrophys. J. 630, 167–185 (2005).

    ADS  Article  Google Scholar 

  27. Rodriguez, C. L., Zevin, M., Pankow, C., Kalogera, V. & Rasio, F. A. Illuminating black hole binary formation channels with spins in advanced LIGO. Astrophys. J. 832, L2 (2016).

    ADS  Article  Google Scholar 

  28. Ostriker, E. C. Dynamical friction in a gaseous medium. Astrophys. J. 513, 252–258 (1999).

    ADS  Article  Google Scholar 

  29. Kim, H. & Kim, W.-T. Dynamical friction of a circular-orbit perturber in a gaseous medium. Astrophys. J. 665, 432–444 (2007).

    ADS  Article  Google Scholar 

  30. Samsing, J., MacLeod, M. & Ramirez-Ruiz, E. The formation of eccentric compact binary inspirals and the role of gravitational wave emission in binary-single stellar encounters. Astrophys. J. 784, 71 (2014).

    ADS  Article  Google Scholar 

  31. Samsing, J., MacLeod, M. & Ramirez-Ruiz, E. Formation of tidal captures and gravitational wave inspirals in binary-single interactions. Astrophys. J. 846, 36 (2017).

    ADS  Article  Google Scholar 

  32. Samsing, J., MacLeod, M. & Ramirez-Ruiz, E. Dissipative evolution of unequal-mass binary–single interactions and its relevance to gravitational-wave detections. Astrophys. J. 853, 140 (2018).

    ADS  Article  Google Scholar 

  33. Heggie, D. C. Binary evolution in stellar dynamics. Mon. Not. R. Astron. Soc. 173, 729–787 (1975).

    ADS  Article  Google Scholar 

  34. Samsing, J., Askar, A. & Giersz, M. MOCCA-SURVEY database. I. Eccentric black hole mergers during binary–single interactions in globular clusters. Astrophys. J. 855, 124 (2018).

    ADS  Article  Google Scholar 

  35. Gondán, L. & Kocsis, B. Measurement accuracy of inspiraling eccentric neutron star and black hole binaries using gravitational waves. Astrophys. J. 871, 178 (2019).

    ADS  Article  Google Scholar 

  36. Zevin, M., Samsing, J., Rodriguez, C., Haster, C.-J. & Ramirez-Ruiz, E. Eccentric black hole mergers in dense star clusters: the role of binary–binary encounters. Astrophys. J. 871, 91 (2019).

    ADS  Article  Google Scholar 

  37. Li, Y.-P., Dempsey, A. M., Li, S., Li, H. & Li, J. Orbital evolution of binary black holes in active galactic nucleus disks: a disk channel for binary black hole mergers? Astrophys. J. 911, 124 (2021).

    ADS  CAS  Article  Google Scholar 

  38. Samsing, J., Hamers, A. S. & Tyles, J. G. Effect of distant encounters on black hole binaries in globular clusters: systematic increase of in-cluster mergers in the LISA band. Phys. Rev. D 100, 043010 (2019).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Bose, K. Holley-Bockelmann, A. Pai, M. Zevin and M. Safarzadeh for their useful suggestions. J.S. is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 844629. D.J.D. received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101029157 and through Villum Fonden grant no. 29466. I.B. acknowledges the support of the Alfred P. Sloan Foundation and NSF grants PHY-1911796 and PHY-2110060. H.T. is financially supported by the Grants-in-Aid for Basic Research by the Ministry of Education, Science and Culture of Japan (17H01102, 17H06360) and the Japan Society for the Promotion of Science (JSPS) KAKENHI grant number JP21J00794. N.W.C.L. acknowledges the support of a Fondecyt Iniciación grant 11180005, the financial support from Millenium Nucleus NCN19-058 (TITANs) and the BASAL Centro de Excelencia en Astrofisica y Tecnologias Afines (CATA) grant CATA AFB170002 along with ANID BASAL projects ACE210002 and FB210003. Z.H. acknowledges support from NASA grant NNX15AB19G and NSF grants AST-1715661 and AST-2006176. B.L. gratefully acknowledges support from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 847523 ‘INTERACTIONS’. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme ERC-2014-STG under grant agreement no. 638435 (GalNUC) to B.K. M.E.P. gratefully acknowledges support from the Independent Research Fund Denmark (DFF) via grant no. DFF 8021-00400B.

Author information

Authors and Affiliations

Authors

Contributions

J.S. led the work, carried out the simulations and calculations, and wrote the initial manuscript together with I.B. and D.J.D. The remaining authors, Z.H., B.K., N.W.C.L., B.L., M.E.P. and H.T., all contributed equally to the intellectual development of the ideas and the preparation of the final manuscript.

Corresponding author

Correspondence to J. Samsing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samsing, J., Bartos, I., D’Orazio, D.J. et al. AGN as potential factories for eccentric black hole mergers. Nature 603, 237–240 (2022). https://doi.org/10.1038/s41586-021-04333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04333-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing