Abstract
There is some weak evidence that the black hole merger named GW190521 had a non-zero eccentricity1,2. In addition, the masses of the component black holes exceeded the limit predicted by stellar evolution3. The large masses can be explained by successive mergers4,5, which may be efficient in gas disks surrounding active galactic nuclei, but it is difficult to maintain an eccentric orbit all the way to the merger, as basic physics would argue for circularization6. Here we show that active galactic nuclei disk environments can lead to an excess of eccentric mergers, if the interactions between single and binary black holes are frequent5 and occur with mutual inclinations of less than a few degrees. We further illustrate that this eccentric population has a different distribution of the inclination between the spin vectors of the black holes and their orbital angular momentum at merger7, referred to as the spin–orbit tilt, compared with the remaining circular mergers.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
The data that support the findings of this study are available from the corresponding author on reasonable request.
Code availability
Requests for codes should be addressed to the corresponding author.
References
Gayathri, V. et al. Eccentricity estimate for black hole mergers with numerical relativity simulations. Nat. Astron. https://doi.org/10.1038/s41550-021-01568-w (2022).
Romero-Shaw, I., Lasky, P. D., Thrane, E. & Calderón Bustillo, J. GW190521: orbital eccentricity and signatures of dynamical formation in a binary black hole merger signal. Astrophys. J. Lett. 903, L5 (2020).
Abbott, R. et al. Properties and astrophysical implications of the 150M⊙ binary black hole merger GW190521. Astrophys. J. Lett. 900, L13 (2020).
Yang, Y. et al. Hierarchical black hole mergers in active galactic nuclei. Phys. Rev. Lett. 123, 181101 (2019).
Tagawa, H., Haiman, Z. & Kocsis, B. Formation and evolution of compact-object binaries in AGN disks. Astrophys. J. 898, 25 (2020).
Peters, P. Gravitational radiation and the motion of two point masses. Phys. Rev. 136, B1224–B1232 (1964).
Abbott, R. et al. GW190521: a binary black hole merger with a total mass of 150 M⊙. Phys. Rev. Lett. 125, 101102 (2020).
Bartos, I., Kocsis, B., Haiman, Z. & Márka, S. Rapid and bright stellar-mass binary black hole mergers in active galactic nuclei. Astrophys. J. 835, 165 (2017).
Levin, Y. Formation of massive stars and black holes in self-gravitating AGN discs, and gravitational waves in LISA band. Preprint at https://arxiv.org/abs/astro-ph/0307084 (2003).
Stone, N. C., Metzger, B. D. & Haiman, Z. Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’. Mon. Not. R. Astron. Soc. 464, 946–954 (2017).
Cantiello, M., Jermyn, A. S. & Lin, D. N. C. Stellar evolution in AGN disks. Astrophys. J. 910, 94 (2021).
McKernan, B., Ford, K. E. S., Lyra, W. & Perets, H. B. Intermediate mass black holes in AGN discs–I. Production and growth. Mon. Not. R. Astron. Soc. 425, 460–469 (2012).
McKernan, B. et al. Constraining stellar-mass black hole mergers in AGN disks detectable with LIGO. Astrophys. J. 866, 66 (2018).
Leigh, N. W. C. et al. On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening. Mon. Not. R. Astron. Soc. 474, 5672–5683 (2018).
Secunda, A. et al. Orbital migration of interacting stellar mass black holes in disks around supermassive black holes. Astrophys. J. 878, 85 (2019).
Tagawa, H., Haiman, Z., Bartos, I. & Kocsis, B. Spin evolution of stellar-mass black hole binaries in active galactic nuclei. Astrophys. J. 899, 26 (2020).
Kocsis, B., Gáspár, M. E. & Márka, S. Detection rate estimates of gravity waves emitted during parabolic encounters of stellar black holes in globular clusters. Astrophys. J. 648, 411–429 (2006).
Rodriguez, C. L. et al. Post-Newtonian dynamics in dense star clusters: formation, masses, and merger rates of highly-eccentric black hole binaries. Phys. Rev. D 98, 123005 (2018).
Samsing, J. Eccentric black hole mergers forming in globular clusters. Phys. Rev. D 97, 103014 (2018).
Graham, M. J. et al. Candidate electromagnetic counterpart to the binary black hole merger gravitational-wave event S190521g. Phys. Rev. Lett. 124, 251102 (2020).
Blanchet, L. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17, 2 (2014).
Samsing, J. & D’Orazio, D. J. Black hole mergers from globular clusters observable by LISA I: eccentric sources originating from relativistic N-body dynamics. Mon. Not. R. Astron. Soc. 481, 5445–5450 (2018).
Monaghan, J. J. A statistical theory of the disruption of three-body systems — II. High angular momentum. Mon. Not. R. Astron. Soc. 177, 583–594 (1976).
Valtonen, M. & Karttunen, H. The Three-Body Problem (Cambridge Univ. Press, 2006).
Stone, N. C. & Leigh, N. W. C. A statistical solution to the chaotic, non-hierarchical three-body problem. Nature 576, 406–410 (2019).
Thompson, T. A., Quataert, E. & Murray, N. Radiation pressure-supported starburst disks and active galactic nucleus fueling. Astrophys. J. 630, 167–185 (2005).
Rodriguez, C. L., Zevin, M., Pankow, C., Kalogera, V. & Rasio, F. A. Illuminating black hole binary formation channels with spins in advanced LIGO. Astrophys. J. 832, L2 (2016).
Ostriker, E. C. Dynamical friction in a gaseous medium. Astrophys. J. 513, 252–258 (1999).
Kim, H. & Kim, W.-T. Dynamical friction of a circular-orbit perturber in a gaseous medium. Astrophys. J. 665, 432–444 (2007).
Samsing, J., MacLeod, M. & Ramirez-Ruiz, E. The formation of eccentric compact binary inspirals and the role of gravitational wave emission in binary-single stellar encounters. Astrophys. J. 784, 71 (2014).
Samsing, J., MacLeod, M. & Ramirez-Ruiz, E. Formation of tidal captures and gravitational wave inspirals in binary-single interactions. Astrophys. J. 846, 36 (2017).
Samsing, J., MacLeod, M. & Ramirez-Ruiz, E. Dissipative evolution of unequal-mass binary–single interactions and its relevance to gravitational-wave detections. Astrophys. J. 853, 140 (2018).
Heggie, D. C. Binary evolution in stellar dynamics. Mon. Not. R. Astron. Soc. 173, 729–787 (1975).
Samsing, J., Askar, A. & Giersz, M. MOCCA-SURVEY database. I. Eccentric black hole mergers during binary–single interactions in globular clusters. Astrophys. J. 855, 124 (2018).
Gondán, L. & Kocsis, B. Measurement accuracy of inspiraling eccentric neutron star and black hole binaries using gravitational waves. Astrophys. J. 871, 178 (2019).
Zevin, M., Samsing, J., Rodriguez, C., Haster, C.-J. & Ramirez-Ruiz, E. Eccentric black hole mergers in dense star clusters: the role of binary–binary encounters. Astrophys. J. 871, 91 (2019).
Li, Y.-P., Dempsey, A. M., Li, S., Li, H. & Li, J. Orbital evolution of binary black holes in active galactic nucleus disks: a disk channel for binary black hole mergers? Astrophys. J. 911, 124 (2021).
Samsing, J., Hamers, A. S. & Tyles, J. G. Effect of distant encounters on black hole binaries in globular clusters: systematic increase of in-cluster mergers in the LISA band. Phys. Rev. D 100, 043010 (2019).
Acknowledgements
We are grateful to N. Bose, K. Holley-Bockelmann, A. Pai, M. Zevin and M. Safarzadeh for their useful suggestions. J.S. is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 844629. D.J.D. received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101029157 and through Villum Fonden grant no. 29466. I.B. acknowledges the support of the Alfred P. Sloan Foundation and NSF grants PHY-1911796 and PHY-2110060. H.T. is financially supported by the Grants-in-Aid for Basic Research by the Ministry of Education, Science and Culture of Japan (17H01102, 17H06360) and the Japan Society for the Promotion of Science (JSPS) KAKENHI grant number JP21J00794. N.W.C.L. acknowledges the support of a Fondecyt Iniciación grant 11180005, the financial support from Millenium Nucleus NCN19-058 (TITANs) and the BASAL Centro de Excelencia en Astrofisica y Tecnologias Afines (CATA) grant CATA AFB170002 along with ANID BASAL projects ACE210002 and FB210003. Z.H. acknowledges support from NASA grant NNX15AB19G and NSF grants AST-1715661 and AST-2006176. B.L. gratefully acknowledges support from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 847523 ‘INTERACTIONS’. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme ERC-2014-STG under grant agreement no. 638435 (GalNUC) to B.K. M.E.P. gratefully acknowledges support from the Independent Research Fund Denmark (DFF) via grant no. DFF 8021-00400B.
Author information
Authors and Affiliations
Contributions
J.S. led the work, carried out the simulations and calculations, and wrote the initial manuscript together with I.B. and D.J.D. The remaining authors, Z.H., B.K., N.W.C.L., B.L., M.E.P. and H.T., all contributed equally to the intellectual development of the ideas and the preparation of the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Samsing, J., Bartos, I., D’Orazio, D.J. et al. AGN as potential factories for eccentric black hole mergers. Nature 603, 237–240 (2022). https://doi.org/10.1038/s41586-021-04333-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-021-04333-1
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.