Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultra-narrow optical linewidths in rare-earth molecular crystals

Abstract

Rare-earth ions (REIs) are promising solid-state systems for building light–matter interfaces at the quantum level1,2. This relies on their potential to show narrow optical and spin homogeneous linewidths, or, equivalently, long-lived quantum states. This enables the use of REIs for photonic quantum technologies such as memories for light, optical–microwave transduction and computing3,4,5. However, so far, few crystalline materials have shown an environment quiet enough to fully exploit REI properties. This hinders further progress, in particular towards REI-containing integrated nanophotonics devices6,7. Molecular systems can provide such capability but generally lack spin states. If, however, molecular systems do have spin states, they show broad optical lines that severely limit optical-to-spin coherent interfacing8,9,10. Here we report on europium molecular crystals that exhibit linewidths in the tens of kilohertz range, orders of magnitude narrower than those of other molecular systems. We harness this property to demonstrate efficient optical spin initialization, coherent storage of light using an atomic frequency comb, and optical control of ion–ion interactions towards implementation of quantum gates. These results illustrate the utility of rare-earth molecular crystals as a new platform for photonic quantum technologies that combines highly coherent emitters with the unmatched versatility in composition, structure and integration capability of molecular materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Material and low-temperature optical spectroscopy.
Fig. 2: Ultra-narrow optical homogeneous linewidths.
Fig. 3: Optically addressable nuclear spins.
Fig. 4: Coherent light storage and optically controlled ion–ion interactions.

Similar content being viewed by others

Data availability

Datasets generated and/or analysed during the current study are available in the Zenodo repository (https://doi.org/10.5281/zenodo.5652030). Source data are provided with this paper.

References

  1. Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

    Article  ADS  CAS  Google Scholar 

  2. Goldner, P., Ferrier, A. & Guillot-Noël, O. in Handbook on the Physics and Chemistry of Rare Earths Vol. 46 (eds Bünzli, J.-C. G. & Pecharsky, V. K.) 1–78 (Elsevier, 2015).

  3. Bussières, F. et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photon. 8, 775–778 (2014).

    Article  ADS  Google Scholar 

  4. Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).

    Article  ADS  CAS  Google Scholar 

  5. Kinos, A. et al. Roadmap for rare-earth quantum computing. Preprint at https://arxiv.org/abs/2103.15743 (2021).

  6. Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    Article  ADS  CAS  Google Scholar 

  7. Chen, S., Raha, M., Phenicie, C. M., Ourari, S. & Thompson, J. D. Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit. Science 370, 592–595 (2020).

    Article  CAS  Google Scholar 

  8. Bayliss, S. L. et al. Optically addressable molecular spins for quantum information processing. Science 370, 1309–1312 (2020).

    Article  ADS  CAS  Google Scholar 

  9. Kumar, K. S. et al. Optical spin-state polarization in a binuclear europium complex towards molecule-based coherent light-spin interfaces. Nat. Commun. 12, 2152 (2021).

    Article  ADS  CAS  Google Scholar 

  10. Toninelli, C. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021).

    Article  ADS  CAS  Google Scholar 

  11. Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article  ADS  CAS  Google Scholar 

  12. de Riedmatten, H., Afzelius, M., Staudt, M. U., Simon, C. & Gisin, N. A solid-state light–matter interface at the single-photon level. Nature 456, 773–777 (2008).

    Article  ADS  Google Scholar 

  13. Seri, A. et al. Quantum storage of frequency-multiplexed heralded single photons. Phys. Rev. Lett. 123, 080502 (2019).

    Article  ADS  CAS  Google Scholar 

  14. Zhong, T. & Goldner, P. Emerging rare-earth doped material platforms for quantum nanophotonics. Nanophotonics 8, 2003–2015 (2019).

    Article  CAS  Google Scholar 

  15. Casabone, B. et al. Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles. Nat. Commun. 12, 3570 (2021).

    Article  ADS  CAS  Google Scholar 

  16. Zhong, T. et al. Optically addressing single rare-earth ions in a nanophotonic cavity. Phys. Rev. Lett. 121, 183603 (2018).

    Article  ADS  CAS  Google Scholar 

  17. Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article  ADS  CAS  Google Scholar 

  19. Zirkelbach, J. et al. Partial cloaking of a gold particle by a single molecule. Phys. Rev. Lett. 125, 103603 (2020).

    Article  ADS  CAS  Google Scholar 

  20. Melby, L. R., Rose, N. J., Abramson, E. & Caris, J. C. Synthesis and fluorescence of some trivalent lanthanide complexes. J. Am. Chem. Soc. 86, 5117–5125 (1964).

    Article  CAS  Google Scholar 

  21. Binnemans, K. Interpretation of europium (III) spectra. Coord. Chem. Rev. 295, 1–45 (2015).

    Article  CAS  Google Scholar 

  22. Könz, F. et al. Temperature and concentration dependence of optical dephasing, spectral-hole lifetime, and anisotropic absorption in Eu3+:Y2SiO5. Phys. Rev. B 68, 085109 (2003).

    Article  ADS  Google Scholar 

  23. Thiel, C. W., Böttger, T. & Cone, R. L. Rare-earth-doped materials for applications in quantum information storage and signal processing. J. Lumin. 131, 353–361 (2011).

    Article  CAS  Google Scholar 

  24. Abella, I. D., Kurnit, N. A. & Hartmann, S. R. Photon echoes. Phys. Rev. 141, 391 (1966).

    Article  ADS  CAS  Google Scholar 

  25. Perrot, A. et al. Narrow optical homogeneous linewidths in rare earth doped nanocrystals. Phys. Rev. Lett. 111, 203601 (2013).

    Article  ADS  CAS  Google Scholar 

  26. Riesen, H. Hole-burning spectroscopy of coordination compounds. Coord. Chem. Rev. 250, 1737–1754 (2006).

    Article  CAS  Google Scholar 

  27. Shelby, R. & Macfarlane, R. M. Frequency-dependent optical dephasing in the stoichiometric material EuP5O14. Phys. Rev. Lett. 45, 1098–1101 (1980).

    Article  ADS  CAS  Google Scholar 

  28. Flinn, G. P. et al. Sample-dependent optical dephasing in bulk crystalline samples of Y2O3:Eu3+. Phys. Rev. B 49, 5821 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Kozankiewicz, B. & Orrit, M. Single-molecule photophysics, from cryogenic to ambient conditions. Chem. Soc. Rev. 43, 1029–1043 (2014).

    Article  CAS  Google Scholar 

  30. Serrano, D., Karlsson, J., Fossati, A., Ferrier, A. & Goldner, P. All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles. Nat. Commun. 9, 2127 (2018).

    Article  ADS  CAS  Google Scholar 

  31. Afzelius, M. & Simon, C. Impedance-matched cavity quantum memory. Phys. Rev. A 82, 022310 (2010).

    Article  ADS  Google Scholar 

  32. Macfarlane, R. M. Optical Stark spectroscopy of solids. J. Lumin. 125, 156–174 (2007).

    Article  CAS  Google Scholar 

  33. Altner, S. B., Mitsunaga, M., Zumofen, G. & Wild, U. P. Dephasing-rephasing balancing in photon echoes by excitation induced frequency shifts. Phys. Rev. Lett. 76, 1747–1750 (1996).

    Article  ADS  CAS  Google Scholar 

  34. Wernsdorfer, W. & Ruben, M. Synthetic Hilbert space engineering of molecular qudits: isotopologue chemistry. Adv. Mater. 31, 1806687 (2019).

    Article  Google Scholar 

  35. Godfrin, C. et al. Operating quantum states in single magnetic molecules: implementation of Grover’s quantum algorithm. Phys. Rev. Lett. 119, 187702 (2017).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Afzelius for useful discussions, and N. Harada and P. Vermaut for assistance during scanning electron microscopy measurements. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 820391 (SQUARE) and EUCOR Marie Skłodowska-Curie COFUND project number 847471 (QUSTEC), the French Agence Nationale de la Recherche under grant ANR-20-CE09-0022 (UltraNanOSpec), the Frontiers Research in Chemistry Foundation CIRFC number 93 "Optically controlled qudits" and KIT Future Fields Project "Optically addressable qubits".

Author information

Authors and Affiliations

Authors

Contributions

P.G., M.R. and D.H. conceived and supervised the project. D.S. and S.K.K. were involved in the conceptual development of the project. S.K.K. and M.R. were responsible for the synthesis and characterization of the isotopologue complexes. B.H. performed powder X-ray diffraction studies and indexed the patterns. O.F. solved the X-ray structure of the complex. D.S. and P.G. performed the optical experiments and analysed the results. D.S. and P.G. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Diana Serrano, Senthil Kumar Kuppusamy, Mario Ruben or Philippe Goldner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks David Mills and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Eu3+ complex preparation and X-ray crystal structure.

Upper: Schematic representation of the preparation of the europium complex discussed in this study. Lower: X-ray crystal structure of the complex. As shown, the piperidin-1-ium cation is involved in hydrogen bonding interactions with two oxygen atoms of benzoylacetonate ligands.

Extended Data Fig. 2 Photostability of the Eu3+ complex.

5D0 photoluminescence (PL) intensity under continuous wave excitation measured at 8 K for the 151Eu3+ isotopically enriched complex. The constant PL signal confirms absence of photobleaching. See SI section 3 for more details.

Source data

Extended Data Fig. 3 2-pulse photon echo decay from the 5% Eu3+-95%Y3+ diluted complex.

The experimental decay (black circles) was fitted with a double exponential model (red curve) with T2,fast = 18 μs and T2,slow = 68 μs decay time constants.

Source data

Extended Data Fig. 4 Spectral tailoring prior to AFC storage.

a. Spectral pit of 9 MHz dug in the absorption profile at 30 MHz to create a high absorption region at 0 MHz. b. Atomic frequency comb (AFC) with teeth of 0.9 MHz separated by 1.75 MHz (finesse F = 1.9). The FFT of the storage pulse is presented over the AFC (blue line) showing good spectral overlap. The input pulse intensity was estimated by sending it through the spectral pit in a, taking advantage of the pit’s almost full transparency. A correction was made to account for residual absorption.

Source data

Supplementary information

Supplementary Information

This file contains the table of contents; supplementary text, figures, tables and references.

Peer Review File

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano, D., Kuppusamy, S.K., Heinrich, B. et al. Ultra-narrow optical linewidths in rare-earth molecular crystals. Nature 603, 241–246 (2022). https://doi.org/10.1038/s41586-021-04316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04316-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing