Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A highly distorted ultraelastic chemically complex Elinvar alloy

An Author Correction to this article was published on 17 March 2022

This article has been updated

Abstract

The development of high-performance ultraelastic metals with superb strength, a large elastic strain limit and temperature-insensitive elastic modulus (Elinvar effect) are important for various industrial applications, from actuators and medical devices to high-precision instruments1,2. The elastic strain limit of bulk crystalline metals is usually less than 1 per cent, owing to dislocation easy gliding. Shape memory alloys3—including gum metals4,5 and strain glass alloys6,7—may attain an elastic strain limit up to several per cent, although this is the result of pseudo-elasticity and is accompanied by large energy dissipation3. Recently, chemically complex alloys, such as ‘high-entropy’ alloys8, have attracted tremendous research interest owing to their promising properties9,10,11,12,13,14,15. In this work we report on a chemically complex alloy with a large atomic size misfit usually unaffordable in conventional alloys. The alloy exhibits a high elastic strain limit (approximately 2 per cent) and a very low internal friction (less than 2 × 10−4) at room temperature. More interestingly, this alloy exhibits an extraordinary Elinvar effect, maintaining near-constant elastic modulus between room temperature and 627 degrees Celsius (900 kelvin), which is, to our knowledge, unmatched by the existing alloys hitherto reported.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure characterization of single-crystal Co25Ni25(HfTiZr)50 alloy.
Fig. 2: DFT calculation of three structure models for the Co25Ni25(HfTiZr)50 alloy.
Fig. 3: Mechanical properties of the Co25Ni25(HfTiZr)50 alloy.
Fig. 4: The Elinvar effect in the Co25Ni25(HfTiZr)50 alloy.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article.

Change history

References

  1. Szold, A. Nitinol: shape-memory and super-elastic materials in surgery. Surg. Endosc. 20, 1493–1496 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Duerig, T. W. Present and future applications of shape memory and superelastic materials. MRS Proc. 360, 497 (2011).

    Article  Google Scholar 

  3. Tanaka, Y. et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327, 1488–1490 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Saito, T. et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464–467 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Gutkin, M. Yu., Ishizaki, T., Kuramoto, S. & Ovid’ko, I. A. Nanodisturbances in deformed gum metal. Acta Mater. 54, 2489–2499 (2006).

    Article  ADS  CAS  Google Scholar 

  6. Wang, Y., Ren, X. & Otsuka, K. Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97, 225703 (2006).

    Article  ADS  PubMed  CAS  Google Scholar 

  7. Ren, X. Strain glass and ferroic glass – unusual properties from glassy nano-domains. Phys. Stat. Solidi B 251, 1982–1992 (2014).

    Article  ADS  CAS  Google Scholar 

  8. Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    Article  CAS  Google Scholar 

  9. Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227–230 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Lei, Z. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546–550 (2018); correction 565, E8 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Yang, T. et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362, 933–937 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Chung, D., Ding, Z. & Yang, Y. Hierarchical eutectic structure enabling superior fracture toughness and superb strength in CoCrFeNiNb0.5 eutectic high entropy alloy at room temperature. Adv. Eng. Mater. 21, 1801060 (2019).

    Article  CAS  Google Scholar 

  14. Hua, N. et al. Mechanical, corrosion, and wear properties of biomedical Ti–Zr–Nb–Ta–Mo high entropy alloys. J. Alloys Compd. 861, 157997 (2021).

    Article  CAS  Google Scholar 

  15. Li, Y. et al. Research progress on refractory high entropy alloys. Rare Met. Mater. Eng. 49, 4365–4372 (2020).

    Google Scholar 

  16. Ye, Y. F., Wang, Q., Lu, J., Liu, C. T. & Yang, Y. High-entropy alloy: challenges and prospects. Mater. Today 19, 349–362 (2016).

    Article  CAS  Google Scholar 

  17. Ye, Y. F., Liu, C. T. & Yang, Y. A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater. 94, 152–161 (2015).

    Article  ADS  CAS  Google Scholar 

  18. Ye, Y. F. et al. Atomic-scale distorted lattice in chemically disordered equimolar complex alloys. Acta Mater. 150, 182–194 (2018).

    Article  ADS  CAS  Google Scholar 

  19. Larsen, P. M., Schmidt, S. & Schiøtz, J. Robust structural identification via polyhedral template matching. Modell. Simul. Mater. Sci. Eng. 24, 055007 (2016).

    Article  ADS  CAS  Google Scholar 

  20. Pugno, N. M. & Ruoff, R. S. Nanoscale Weibull statistics. J. Appl. Phys. 99, 024301 (2006).

    Article  ADS  CAS  Google Scholar 

  21. Yang, Y., Ye, J. C., Lu, J., Liu, F. X. & Liaw, P. K. Effects of specimen geometry and base material on the mechanical behavior of focused-ion-beam-fabricated metallic-glass micropillars. Acta Mater. 57, 1613–1623 (2009).

    Article  ADS  CAS  Google Scholar 

  22. Greer, J. R. & Nix, W. D. Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).

    Article  ADS  CAS  Google Scholar 

  23. Kiener, D., Motz, C., Schöberl, T., Jenko, M. & Dehm, G. Determination of mechanical properties of copper at the micron scale. Adv. Eng. Mater. 8, 1119–1125 (2006).

    Article  CAS  Google Scholar 

  24. Dimiduk, D. M., Uchic, M. D. & Parthasarathy, T. A. Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065–4077 (2005).

    Article  ADS  CAS  Google Scholar 

  25. Frick, C. P., Clark, B. G., Orso, S., Schneider, A. S. & Arzt, E. Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng. A 489, 319–329 (2008).

    Article  CAS  Google Scholar 

  26. Zou, Y., Maiti, S., Steurer, W. & Spolenak, R. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85–97 (2014).

    Article  ADS  CAS  Google Scholar 

  27. Chen, Z. M. T., Okamoto, N. L., Demura, M. & Inui, H. Micropillar compression deformation of single crystals of Co3(Al,W) with the L12 structure. Scripta Mater. 121, 28–31 (2016).

    Article  CAS  Google Scholar 

  28. Gómez-Cortés, J. F. et al. Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale. Nat. Nanotechnol. 12, 790–796 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Li, F. C. et al. The stochastic transition from size dependent to size independent yield strength in metallic glasses. J. Mech. Phys. Solids 109, 200–216 (2017).

    Article  ADS  CAS  Google Scholar 

  30. Lai, Y. H. et al. Bulk and microscale compressive behavior of a Zr-based metallic glass. Scripta Mater. 58, 890–893 (2008).

    Article  CAS  Google Scholar 

  31. Ye, J. C., Lu, J., Yang, Y. & Liaw, P. K. Extraction of bulk metallic-glass yield strengths using tapered micropillars in micro-compression experiments. Intermetallics 18, 385–393 (2010).

    Article  CAS  Google Scholar 

  32. Ye, J. C., Lu, J., Liu, C. T., Wang, Q. & Yang, Y. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat. Mater. 9, 619–623 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Hao, S. et al. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect. Sci. Rep. 5, 8892 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, L., Xiang, Y., Han, J. & Srolovitz, D. J. The effect of randomness on the strength of high-entropy alloys. Acta Mater. 166, 424–434 (2019).

    Article  ADS  CAS  Google Scholar 

  35. Han, S. M. et al. Critical-temperature/Peierls-stress dependent size effects in body centered cubic nanopillars. Appl. Phys. Lett. 102, 041910 (2013).

    Article  ADS  CAS  Google Scholar 

  36. Lee, S.-W. & Nix, W. D. Size dependence of the yield strength of fcc and bcc metallic micropillars with diameters of a few micrometers. Philos. Mag. 92, 1238–1260 (2012).

    Article  ADS  CAS  Google Scholar 

  37. Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science 271–282 (Springer, 2009).

  38. Feuerbacher, M. Dislocations and deformation microstructure in a B2-ordered Al28Co20Cr11Fe15Ni26 high-entropy alloy. Sci. Rep. 6, 29700 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gschneidner, K. Jr et al. A family of ductile intermetallic compounds. Nat. Mater. 2, 587–591 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Wu, Z., Gao, Y. & Bei, H. Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys. Acta Mater. 120, 108–119 (2016).

    Article  ADS  CAS  Google Scholar 

  41. Kamimura, Y., Edagawa, K. & Takeuchi, S. Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure. Acta Mater. 61, 294–309 (2013).

    Article  ADS  CAS  Google Scholar 

  42. Laplanche, G. et al. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. J. Alloys Compd. 746, 244–255 (2018).

    Article  CAS  Google Scholar 

  43. Hausch, G. Elastic and magnetoelastic effects in invar alloys. J. Magn. Magn. Mater. 10, 163–169 (1979).

    Article  ADS  CAS  Google Scholar 

  44. Wasserman, E. F. In Handbook of Ferromagnetic Materials Vol. 5 (eds Buschow, K. H. J. & Wohlfarth, E. P.) 237–322 (Elsevier, 1990).

  45. Lam, N. Q. & Okamoto, P. R. A unified approach to solid-state amorphization and melting. MRS Bull. 19, 41–46 (1994).

    Article  CAS  Google Scholar 

  46. Wang, W. H., Bai, H. Y., Luo, J. L., Wang, R. J. & Jin, D. Supersoftening of transverse phonons in Zr41Ti14Cu12.5Ni10B22.5 bulk metallic glass. Phys. Rev. B 62, 25–28 (2000).

    Article  ADS  CAS  Google Scholar 

  47. Schuh, C. A., Hufnagel, T. C. & Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007).

    Article  ADS  CAS  Google Scholar 

  48. Grover, R., Getting, I. C. & Kennedy, G. C. Simple compressibility relation for solids. Phys. Rev. B 7, 567–571 (1973).

    Article  ADS  CAS  Google Scholar 

  49. Liang, L., Ma, H. & Wei, Y. Size-dependent elastic modulus and vibration frequency of nanocrystals. J. Nanomater. 2011, 670857 (2011).

    Google Scholar 

  50. Kalidindi, S. R., Abusafieh, A. & El-Danaf, E. Accurate characterization of machine compliance for simple compression testing. Exp. Mech. 37, 210–215 (1997).

    Article  CAS  Google Scholar 

  51. Wang, W. H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater Sci. 57, 487–656 (2012).

    Article  CAS  Google Scholar 

  52. Etienne, S., Cavaille, J. Y., Perez, J., Point, R. & Salvia, M. Automatic system for analysis of micromechanical properties. Rev. Sci. Instrum. 53, 1261–1266 (1982).

    Article  ADS  CAS  Google Scholar 

  53. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    ADS  CAS  Google Scholar 

  54. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  ADS  CAS  Google Scholar 

  55. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  ADS  CAS  Google Scholar 

  56. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992); erratum 48, 4978 (1993).

    Article  ADS  CAS  Google Scholar 

  57. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  ADS  CAS  Google Scholar 

  58. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  59. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  60. von Mises, R. Mechanics of solid bodies in the plastically-deformable state. Göttin. Nachr. Math. Phys. 1, 582–592 (1913).

    Google Scholar 

  61. Shimizu, F., Ogata, S. & Li, J. Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans. 48, 2923–2927 (2007).

    Article  CAS  Google Scholar 

  62. Wang, S. Q. & Ye, H. Q. Ab initioelastic constants for the lonsdaleite phases of C, Si and Ge. J. Phys. Condens. Matter 15, 5307–5314 (2003).

    Article  ADS  CAS  Google Scholar 

  63. Grimvall, G. Thermophysical Properties of Materials 27–45 (North Holland, 1999).

  64. Zhang, J.-M., Zhang, Y., Xu, K.-W. & Ji, V. Representation surfaces of Young’s modulus and Poisson’s ratio for BCC transition metals. Physica B 390, 106–111 (2007).

    Article  ADS  CAS  Google Scholar 

  65. Parrinello, M. & Rahman, A. Crystal structure and pair potentials: a molecular-dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980).

    Article  ADS  CAS  Google Scholar 

  66. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article  ADS  CAS  Google Scholar 

  67. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids 2nd edn (Oxford Univ.Press, 2017).

Download references

Acknowledgements

D.J.S. gratefully acknowledges the support of the Research Grant Council, Hong Kong Government, through the General Research Fund (GRF) with grant nos HKU 11211019. J.G.W. acknowledges the support of Guangdong Major Project of Basic and Applied Basic Research, China (grant no. 2019B030302010). The research of Y.Y. is supported by the Research Grant Council, Hong Kong Government, through the General Research Fund (GRF) with the grant nos CityU11213118 and CityU11200719 as well as by the City University of Hong Kong with grant no. 9610391. C.W.P. acknowledges the financial support of Academia Sinica Career Development Award with grant no. 2317-1050100. Q.Z. acknowledges the funding from the National Natural Science Foundation of China (Nos. 51871054). C.W.P. is grateful for computational support from the National Center for High-performance Computing, Taiwan. Q.F.H. is grateful for the assistance given by X. K. Xi, X. D. Liu and T. Liu.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. supervised the project. Y.Y., C.W.P. and D.J.S. conceived the idea. Q.F.H. fabricated the polycrystalline samples and J.C.Q. prepared the single-crystal samples. Q.F.H. characterized the structures and mechanical properties of the samples. J.G.W., C.W.P. and H.A.C. carried out the atomistic simulations. J.C.Q. and J.M.P. performed the dynamic mechanical spectroscopy analyses. J.H.L. and C.T.L. performed the 3D APT experiments. L.H.X., L.L.F., Q.S.Z. and Y.R. performed the in situ HEXRD experiments. Y.Y., D.J.S., C.W.P., Z.Y.D., Z.Q.Z. and Q.W. contributed to the data analysis. Y.Y., Q.F.H. and C.W.P. wrote the manuscript. All authors participated in the discussion of the results.

Corresponding authors

Correspondence to C. W. Pao, D. J. Srolovitz or Y. Yang.

Ethics declarations

Competing interests

Y.Y. and Q.F.H are in the process of applying a patent related to the alloy design described in this work. The remaining authors declare no competing interests.

Peer review information

Nature thanks David Dye, Andrew Minor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Characterization of single-crystal Co25Ni25(HfTiZr)50 alloy.

a, A low-magnification backscatter electron image and elemental distributions show that the chemical distribution is homogeneous in the single-crystal samples on a sub-micro scale. b, Low-magnification TEM image and the corresponding diffraction patterns ([001] zone axis) in different regions show that there is no phase separation in the single-crystal samples.

Extended Data Fig. 2 The characterization of the polycrystalline Co25Ni25(HfTiZr)50.

a, The inverse pole figure map showing the grain structure of as-cast polycrystalline Co25Ni25(HfTiZr)50 alloy. b, The pole figures showing that there are no preferred orientations in the as-cast polycrystalline Co25Ni25(HfTiZr)50 alloy. c, The XRD patterns of the Co25Ni25(HfTiZr)50 alloy samples after thermal annealing at 1,273 K for different time durations all exhibit single-phase B2 ordering. d, Compression stress–strain curves of the single-crystal and polycrystal Co25Ni25(HfTiZr)50 alloy after annealing at 1,273 K for 9 h. The results show that the mechanical properties of the Co25Ni25(HfTiZr)50 alloy do not change after the heat treatment. e, A low-magnification SEM image shows the microstructure of the Co25Ni25(HfTiZr)50 alloy after annealing at 1,273 K for 9 h. f, The STEM image and elemental mapping near a grain boundary. No segregation to grain boundaries was observed following a 9-h, 1,273-K anneal in our Co25Ni25(HfTiZr)50 alloy. (AC and HT represent as-cast and heat-treated, respectively.) g, The APT reconstructions of the three-dimensional elemental distributions showing the chemical homogeneity along the grain boundary at the nanometre scale. The black rectangle in the EBSD image indicates the position from which the APT tip was carved.

Extended Data Fig. 3 The monotonic and cyclic microcompression results of the single-crystalline Co25Ni25(HfTiZr)50.

a, The typical monotonic stress–strain curves obtained for different micropillar diameters. The inset shows a typical pillar image. b, The Young’s modulus versus pillar diameter of the micropillars in Fig. 3b. The average Young’s modulus is measured to be 106 GPa. c, The size-dependent yield strength of single-crystal Co25Ni25(HfTiZr)50 micropillars. d, The cyclic stress–strain curves obtained within the elastic regime from the micropillar at different nominal stress rates. Note that no mechanical hysteresis is evident in d. The inset shows the (cyclic) load versus time. Five cycles were performed for each compression.

Extended Data Fig. 4 Loss factors.

The loss factors measured for the single-crystal and polycrystalline Co25Ni25(HfTiZr)50 in comparison with various bulk metallic glasses over a wide temperature range.

Extended Data Fig. 5 Comparison of the first height of the steel ball bouncing back from different alloy surfaces.

a, Photo showing the starting moment of the bouncing experiments. be, The first height of the steel ball after bouncing back, as indicated by the white arrow, from single-crystalline Co25Ni25(HfTiZr)50 (b), spark plasma sintered (SPS) Cu50Zr45Al5 metallic glass (c), NiAl alloy with a B2 structure (d), and commercial stainless steel (e). See Supplementary Video 1 for details. We note that all the bulk alloys had a similar size.

Extended Data Fig. 6 The dislocation structure analysis performed in the [111] single-crystalline Co25Ni25(HfTiZr)50 sample after deforming to 4% mechanical strain.

a, \(g=(0\bar{2}0)\) and beam direction Z = [001]. b, \(g=(\bar{1}\bar{1}0)\) and beam direction Z = [001]. c, g = (200) and beam direction Z = [001]. d, \(g=(0\bar{1}1)\) and beam direction \(Z=[\bar{1}11]\). e, \(g=(\bar{1}\bar{1}0)\) and beam direction \(Z=[\bar{1}11]\). f, g = (101) and beam direction \(Z=[\bar{1}11]\). The g·b = 0 out of contrast analyses indicate that the dislocations are of the 001 type. See Supplementary Table 1 for detailed analysis and description of labels A–D.

Extended Data Fig. 7 Stress relaxation and internal friction stress.

a, The typical stress relaxation curve obtained from a single-crystalline Co25Ni25(HfTiZr)50 micropillar with a top diameter of 1 μm. The activation volume is calculated to be ~3.05b3. b, The yield strength of single-crystal Co25Ni25(HfTiZr)50 micropillars at different temperatures. Standard fits to the data (inset equation) yield a Peierls stress of τc ≈ 0.47σc = 2.8 GPa and effective temperature of T0 = 1,107 K. The inset shows the contour plot of the critical stress τc as a function of the correlation length λ and standard deviation Δ for Co25Ni25(HfTiZr)50. Note that  ζ0 stands for a dislocation core size.

Extended Data Fig. 8 The magnetic properties measured for the Co25Ni25(HfTiZr)50 alloy.

a, The magnetization curve of the Co25Ni25(HfTiZr)50 alloy as a function of the applied magnetic field at room temperature. The saturation magnetization Ms of Co25Ni25(HfTiZr)50 is only 1.17 emu g−1. b, The temperature dependence of magnetization of Co25Ni25(HfTiZr)50 under the applied magnetic field of 500 Oe. The result shows that there is an antiferromagnetic (AFM) to ferromagnetic (FM) transition at the transition temperature TN = 851 K. c, The measured magnetostriction coefficient along different directions of single-crystal Co25Ni25(HfTiZr)50 alloy. The magnetostriction coefficient of Co25Ni25(HfTiZr)50 alloy is about zero. The ferromagnetic polycrystalline Ni- and Fe-based metallic glass (MG) are taken for comparison.

Extended Data Fig. 9 The linear thermal expansion coefficient of the Co25Ni25(HfTiZr)50 alloy.

a, The thermal expansion curves obtained from experiments. The average thermal expansion coefficients (α) of the single-crystal and polycrystalline samples are almost the same, about 11.4 × 10−6 K−1. b, The variation of the lattice constant with temperature calculated from the ab initio molecular dynamics simulations. The average thermal expansion coefficient is about 8.1 × 10−6 K−1, which is very close to our experimental measurement.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Equations, Supplementary Figure 1, Supplementary Table 1, Supplementary References and the legend for Supplementary Video 1

Supplementary Video 1

Demonstration of elasticity of different metals with steel ball bouncing tests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q.F., Wang, J.G., Chen, H.A. et al. A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 602, 251–257 (2022). https://doi.org/10.1038/s41586-021-04309-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04309-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing