Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Search for magnetic monopoles produced via the Schwinger mechanism

Abstract

Electrically charged particles can be created by the decay of strong enough electric fields, a phenomenon known as the Schwinger mechanism1. By electromagnetic duality, a sufficiently strong magnetic field would similarly produce magnetic monopoles, if they exist2. Magnetic monopoles are hypothetical fundamental particles that are predicted by several theories beyond the standard model3,4,5,6,7 but have never been experimentally detected. Searching for the existence of magnetic monopoles via the Schwinger mechanism has not yet been attempted, but it is advantageous, owing to the possibility of calculating its rate through semi-classical techniques without perturbation theory, as well as that the production of the magnetic monopoles should be enhanced by their finite size8,9 and strong coupling to photons2,10. Here we present a search for magnetic monopole production by the Schwinger mechanism in Pb–Pb heavy ion collisions at the Large Hadron Collider, producing the strongest known magnetic fields in the current Universe11. It was conducted by the MoEDAL experiment, whose trapping detectors were exposed to 0.235 per nanobarn, or approximately 1.8 × 109, of Pb–Pb collisions with 5.02-teraelectronvolt center-of-mass energy per collision in November 2018. A superconducting quantum interference device (SQUID) magnetometer scanned the trapping detectors of MoEDAL for the presence of magnetic charge, which would induce a persistent current in the SQUID. Magnetic monopoles with integer Dirac charges of 1, 2 and 3 and masses up to 75 gigaelectronvolts per speed of light squared were excluded by the analysis at the 95% confidence level. This provides a lower mass limit for finite-size magnetic monopoles from a collider search and greatly extends previous mass bounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram for the search for Schwinger MMs with MoEDAL.
Fig. 2: 95% confidence level exclusion regions.

Similar content being viewed by others

Data availability

All data used to produce the results of this work, along with the data points shown in the main figures of the paper are stored either on CERN lxplus server or on CERN’s GitLab. They are available upon request to the corresponding author without specific conditions. Source data are provided with this paper.

Code availability

All code used to produce the results of this work, including code to perform statistical analysis and produce the figures, is stored on CERN’s GitLab server and is available upon request to the corresponding author without specific conditions.

References

  1. Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Affleck, I. K. & Manton, N. S. Monopole pair production in a magnetic field. Nucl. Phys. B 194, 38–64 (1982).

    Article  ADS  Google Scholar 

  3. Dirac, P. A. M. Quantised singularities in the electromagnetic field. Proc. R. Soc. London A 133, 60–72 (1931).

    Article  ADS  MATH  Google Scholar 

  4. ’t Hooft, G. Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79, 276–284 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  5. Polyakov, A. M. Particle spectrum in quantum field theory. JETP Lett. 20, 194–195 (1974).

    ADS  Google Scholar 

  6. Wen, X.-G. & Witten, E. Electric and magnetic charges in superstring models. Nucl. Phys. B 261, 651–677 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  7. Mavromatos, N. E. & Mitsou, V. A. Magnetic monopoles revisited: models and searches at colliders and in the cosmos. Int. J. Mod. Phys. A 35, 2030012 (2020).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Ho, D. L.-J. & Rajantie, A. Classical production of ’t Hooft–Polyakov monopoles from magnetic fields. Phys. Rev. D 101, 055003 (2020).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Ho, D. L.-J. & Rajantie, A. Instanton solution for Schwinger production of ’t Hooft–Polyakov monopoles. Phys. Rev. D 103, 115033 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Gould, O., Ho, D. L.-J. & Rajantie, A. Towards Schwinger production of magnetic monopoles in heavy-ion collisions. Phys. Rev. D 100, 015041 (2019).

    Article  ADS  CAS  Google Scholar 

  11. Huang, X.-G. Electromagnetic fields and anomalous transports in heavy-ion collisions—a pedagogical review. Rep. Prog. Phys. 79, 076302 (2016).

    Article  ADS  PubMed  Google Scholar 

  12. MoEDAL Collaboration. Magnetic monopole search with the full MoEDAL trapping detector in 13 TeV pp collisions interpreted in photon-fusion and Drell–Yan production. Phys. Rev. Lett. 123, 021802 (2019).

    Article  ADS  Google Scholar 

  13. Guth, A. H. Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981).

    Article  ADS  CAS  MATH  Google Scholar 

  14. Witten, E. Baryons in the 1/N expansion. Nucl. Phys. B 160, 57–115 (1979).

    Article  ADS  Google Scholar 

  15. Drukier, A. K. & Nussinov, S. Monopole pair creation in energetic collisions: is it possible? Phys. Rev. Lett. 49, 102–105 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Blagojević, M. & Senjanović, P. The quantum field theory of electric and magnetic charge. Phys. Rep. 157, 233–346 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  17. Cho, Y. & Maison, D. Monopole configuration in Weinberg–Salam model. Phys. Lett. B 391, 360–365 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Kimm, K., Yoon, J. H. & Cho, Y. M. Finite energy electroweak dyon. Eur. Phys. J. C 75, 67 (2015).

    Article  ADS  Google Scholar 

  19. Ellis, J., Mavromatos, N. E. & You, T. The price of an electroweak monopole. Phys. Lett. B 756, 29–35 (2016).

    Article  ADS  CAS  MATH  Google Scholar 

  20. Mavromatos, N. E. & Sarkar, S. Magnetic monopoles from global monopoles in the presence of a Kalb–Ramond field. Phys. Rev. D 95, 104025 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  21. Arunasalam, S. & Kobakhidze, A. Electroweak monopoles and the electroweak phase transition. Eur. Phys. J. C 77, 444 (2017).

    Article  ADS  Google Scholar 

  22. Mavromatos, N. E. & Sarkar, S. Regularized Kalb–Ramond magnetic monopole with finite energy. Phys. Rev. D 97, 125010 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Hung, P. Q. Topologically stable, finite-energy electroweak-scale monopoles. Nucl. Phys. B 962, 115278 (2021).

    Article  CAS  MATH  Google Scholar 

  24. Sauter, F. Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Z. Phys. 69, 742–764 (1931).

    Article  ADS  MATH  Google Scholar 

  25. Heisenberg, W. & Euler, H. Consequences of Dirac’s theory of positrons. Z. Phys. 98, 714–732 (1936).

    Article  ADS  CAS  MATH  Google Scholar 

  26. Kaspi, V. M. & Beloborodov, A. M. Magnetars. Ann. Rev. Astron. Astrophys. 55, 261–301 (2017).

    Article  ADS  CAS  Google Scholar 

  27. Gould, O., Ho, D. L.-J. & Rajantie, A. Schwinger pair production of magnetic monopoles: momentum distribution for heavy-ion collisions. Phys. Rev. D 104, 015033 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. MoEDAL Collaboration. First search for dyons with the full MoEDAL trapping detector in 13 TeV pp collisions. Phys. Rev. Lett. 126, 071801 (2021).

    Article  ADS  Google Scholar 

  29. Milton, K. A. Theoretical and experimental status of magnetic monopoles. Rep. Prog. Phys. 69, 1637–1711 (2006).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. The MoEDAL Collaboration. The physics programme of the MoEDAL experiment at the LHC. Int. J. Mod. Phys. A 29, 1430050 (2014).

    Article  Google Scholar 

  31. Gamberg, L., Kalbfleisch, G. R. & Milton, K. A. Direct and indirect searches for low-mass magnetic monopoles. Found. Phys. 30, 543–565 (2000).

    Article  Google Scholar 

  32. Agostinelli, S. et al. Geant4—a simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003).

    Article  ADS  CAS  Google Scholar 

  33. The MoEDAL Collaboration. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton–proton collisions at the LHC. J. High Energy Phys. 2016, 67 (2016).

    Article  Google Scholar 

  34. He, Y. D. Search for a Dirac magnetic monopole in high energy nucleus–nucleus collisions. Phys. Rev. Lett. 79, 3134–3137 (1997).

    Article  ADS  CAS  Google Scholar 

  35. Gould, O. & Rajantie, A. Magnetic monopole mass bounds from heavy-ion collisions and neutron stars. Phys. Rev. Lett. 119, 241601 (2017).

    Article  ADS  PubMed  Google Scholar 

  36. ATLAS Collaboration. Search for magnetic monopoles in √s = 7 TeV pp collisions with the ATLAS detector. Phys. Rev. Lett. 109, 261803 (2012).

    Article  ADS  Google Scholar 

  37. ATLAS Collaboration. Search for magnetic monopoles and stable particles with high electric charges in 8 TeV pp collisions with the ATLAS detector. Phys. Rev. D 93, 052009 (2016).

    Article  ADS  Google Scholar 

  38. ATLAS Collaboration. Search for magnetic monopoles and stable high-electric-charge objects in 13 TeV proton–proton collisions with the ATLAS Detector. Phys. Rev. Lett. 124, 031802 (2020).

    Article  ADS  Google Scholar 

  39. Kobayashi, T. Monopole–antimonopole pair production in primordial magnetic fields. Phys. Rev. D 104, 043501 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  40. Clemencic, M. et al. The LHCb simulation application, Gauss: design, evolution and experience. J. Phys. Conf. Ser. 331, 032023 (2011).

    Article  Google Scholar 

  41. King, M. Simulation of the MoEDAL experiment. Nucl. Part. Phys. Proc. 273–275, 2560–2562 (2016).

    Article  Google Scholar 

  42. Kharzeev, D. E., McLerran, L. D. & Warringa, H. J. The effects of topological charge change in heavy ion collisions: “event by event P and CP violation”. Nucl. Phys. A 803, 227–253 (2008).

    Article  ADS  Google Scholar 

  43. Gursoy, U., Kharzeev, D. & Rajagopal, K. Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions. Phys. Rev. C 89, 054905 (2014).

    Article  ADS  Google Scholar 

  44. ALICE Collaboration. Centrality determination of Pb–Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 2.76 TeV with ALICE. Phys. Rev. C 88, 044909 (2013).

    Article  ADS  Google Scholar 

  45. ALICE Collaboration. Centrality dependence of particle production in p–Pb collisions at \(\sqrt{{s}_{{\rm{NN}}}}\) = 5.02 TeV. Phys. Rev. C 91, 064905 (2015).

    Article  ADS  Google Scholar 

  46. Deng, W.-T. & Huang, X.-G. Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys. Rev. C 85, 044907 (2012).

    Article  ADS  Google Scholar 

  47. Baltz, A. J. The physics of ultraperipheral collisions at the LHC. Phys. Rep. 458, 1–171 (2008).

    Article  ADS  CAS  Google Scholar 

  48. Kruglov, S. I. Pair production and vacuum polarization of vector particles with electric dipole moments and anomalous magnetic moments. Eur. Phys. J. C 22, 89–98 (2001).

    Article  ADS  CAS  Google Scholar 

  49. Gould, O. & Rajantie, A. Thermal Schwinger pair production at arbitrary coupling. Phys. Rev. D 96, 076002 (2017).

    Article  ADS  Google Scholar 

  50. Wolschin, G. Aspects of relativistic heavy-ion collisions. Universe 6, 61 (2020).

    Article  ADS  CAS  Google Scholar 

  51. Tuchin, K. Time and space dependence of the electromagnetic field in relativistic heavy-ion collisions. Phys. Rev. C 88, 024911 (2013).

    Article  ADS  Google Scholar 

  52. Inghirami, G. et al. Magnetic fields in heavy ion collisions: flow and charge transport. Eur. Phys. J. C 80, 293 (2020).

    Article  ADS  CAS  Google Scholar 

  53. Cecchini, S., Patrizii, L., Sahnoun, Z., Sirri, G. & Togo, V. Energy losses of magnetic monopoles in aluminum, iron and copper. Preprint at https://arxiv.org/abs/1606.01220 (2016).

  54. Alvarez, L. W. et al. A magnetic monopole detector utilizing superconducting elements. Rev. Sci. Instrum. 42, 326–330 (1971).

    Article  ADS  Google Scholar 

  55. De Roeck, A. et al. Development of a magnetometer-based search strategy for stopped monopoles at the large hadron collider. Eur. Phys. J. C 72, 2212 (2012).

    Article  ADS  Google Scholar 

  56. Malkus, W. V. R. The interaction of the Dirac magnetic monopole with matter. Phys. Rev. 83, 899–905 (1951).

    Article  ADS  CAS  MATH  Google Scholar 

  57. Bracci, L. & Fiorentini, G. Binding of magnetic monopoles and atomic nuclei. Phys Lett. B 124, 493–496 (1983).

    Article  ADS  Google Scholar 

  58. Bracci, L. & Fiorentini, G. Interactions of magnetic monopoles with nuclei and atoms: formation of bound states and phenomenological consequences. Nucl. Phys. B 232, 236–262 (1984).

    Article  ADS  Google Scholar 

  59. Bracci, L. & Fiorentini, G. On the capture of protons by magnetic monopoles. Nucl. Phys. B 249, 519–532 (1985).

    Article  ADS  Google Scholar 

  60. Olaussen, K. & Sollie, R. Form factor effects on nucleus–magnetic monopole binding. Nucl. Phys. B 255, 465–479 (1985).

    Article  ADS  Google Scholar 

  61. Olaussen, K., Olsen, H. A., Osland, P. & Øverbø, I. Proton capture by magnetic monopoles. Phys. Rev. Lett. 52, 325–328 (1984).

    Article  ADS  CAS  Google Scholar 

  62. Goebel, C. Binding of monopole to nuclei. In Monopole ’83 (ed. Stone, J. L.) 333–337 (Plenum, 1984).

  63. Ruijgrok, Th. W., Tjon, J. A. & Wu, T. T. Monopole chemistry. Phys. Lett. B 129, 209–212 (1983).

    Article  ADS  Google Scholar 

  64. Ruijgrok, T. Binding of matter to a magnetic monopole. Acta Phys. Pol. B 15, 305–314 (1983).

    Google Scholar 

  65. Lipkin, H. J. Effects of magnetic monopoles on nuclear wave functions and possible catalysis of nuclear beta decay and spontaneous fission. Phys. Lett. B 133, 347–350 (1983).

    Article  ADS  Google Scholar 

  66. Lipkin, H. J. Monoponucleosis — the wonderful things that monopoles can do to nuclei if they are there. In Monopole ’83 (ed. Stone, J. L.) 347–358 (Plenum, 1984).

Download references

Acknowledgements

We thank CERN for the LHC’s successful Run-2 operation, as well as the support staff from our institutions without whom MoEDAL could not be operated. We acknowledge the invaluable assistance of particular members of the LHCb Collaboration: G. Wilkinson, R. Lindner, E. Thomas and G. Corti. Computing support was provided by the GridPP Collaboration, in particular by the Queen Mary University of London and Liverpool grid sites. This work was supported by grant PP00P2 150583 of the Swiss NSF; by the UK Science and Technology Facilities Council via the grants ST/L000326/1, ST/L00044X/1, ST/N00101X/1, ST/P000258/1, ST/P000762/1, ST/T000732/1, ST/T000759/1 and ST/T000791/1; by the Generalitat Valenciana via a special grant for MoEDAL and via the projects PROMETEO-II/2017/033 and PROMETEO/2019/087; by MCIU/AEI/FEDER, UE via the grants FPA2016-77177-C2-1-P, FPA2017-85985-P, FPA2017-84543-P and PGC2018-094856-B-I00; by the Physics Department of King’s College London; by NSERC via a project grant; by the V-P Research of the University of Alberta (UofA); by the Provost of the UofA; by UEFISCDI (Romania); by the INFN (Italy); by the Estonian Research Council via a Mobilitas Pluss grant MOBTT5; by the Research Funds of the University of Helsinki; and by the NSF grant 2011214 to the University of Alabama MoEDAL group. A.R. was also supported by Institute for Particle Physics Phenomenology Associateship.

Author information

Authors and Affiliations

Authors

Contributions

The Monopole and Exotics Detector at the LHC was constructed and is maintained by the MoEDAL collaboration. A large number of authors contributed to the data processing, detector calibration and Monte Carlo simulations used in this work. The MoEDAL collaboration acknowledges the substantial contributions to this manuscript from A.U. and I.O. (simulation, statistical analysis, result plots, paper writing); O.G., D.L.-J.H. and A.R. (theoretical calculations, paper writing); and N.E.M. and J.P. (paper writing). The manuscript was reviewed and edited by the collaboration and all authors approved the final version of the manuscript.

Corresponding author

Correspondence to I. Ostrovskiy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature thanks Muneto Nitta, Steve Ahlen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Mean expected rate of Schwinger MMs (Rexp).

The mean expected rate of MMs with 1gD (left) and 2gD (right) magnetic charge in the MMT as a function of the MM mass in the FPA model. The black line corresponds to the default geometry. The grey region corresponds to the systematic error, which is dominated by the material budget. The 95% confidence level mass exclusion region is shown in blue.

Source data

Extended Data Fig. 2 Transverse momentum distribution of Schwinger MMs.

The transverse momentum distribution for Schwinger MMs derived from the FPA, as a function of MM mass (M) plotted versus MM β.

Source data

Extended Data Table 1 Expected rate of MM trapping in the MoEDAL MMTs for the 1gD FPA model, where ϵ is MMT trapping efficiency and Rexp is the mean expected rate of trapped MMs
Extended Data Table 2 Expected rate of MM trapping in the MoEDAL MMTs for the 2gD FPA model
Extended Data Table 3 Expected rate of MM trapping in the MoEDAL MMTs for the 3gD FPA model
Extended Data Table 4 Expected rate of MM trapping in the MoEDAL MMTs for the 4gD FPA model
Extended Data Table 5 Expected rate of MM trapping in the MoEDAL MMTs for the 5gD FPA model

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, B., Alexandre, J., Benes, P. et al. Search for magnetic monopoles produced via the Schwinger mechanism. Nature 602, 63–67 (2022). https://doi.org/10.1038/s41586-021-04298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04298-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing