Abstract
For decades we have known that the Sun lies within the Local Bubble, a cavity of low-density, high-temperature plasma surrounded by a shell of cold, neutral gas and dust1,2,3. However, the precise shape and extent of this shell4,5, the impetus and timescale for its formation6,7, and its relationship to nearby star formation8 have remained uncertain, largely due to low-resolution models of the local interstellar medium. Here we report an analysis of the three-dimensional positions, shapes and motions of dense gas and young stars within 200 pc of the Sun, using new spatial9,10,11 and dynamical constraints12. We find that nearly all of the star-forming complexes in the solar vicinity lie on the surface of the Local Bubble and that their young stars show outward expansion mainly perpendicular to the bubble’s surface. Tracebacks of these young stars’ motions support a picture in which the origin of the Local Bubble was a burst of stellar birth and then death (supernovae) taking place near the bubble’s centre beginning approximately 14 Myr ago. The expansion of the Local Bubble created by the supernovae swept up the ambient interstellar medium into an extended shell that has now fragmented and collapsed into the most prominent nearby molecular clouds, in turn providing robust observational support for the theory of supernova-driven star formation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Future Exploration of the Outer Heliosphere and Very Local Interstellar Medium by Interstellar Probe
Space Science Reviews Open Access 28 February 2023
-
Galactic Cosmic Rays Throughout the Heliosphere and in the Very Local Interstellar Medium
Space Science Reviews Open Access 15 July 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


Data availability
The datasets generated and/or analysed during the current study are publicly available on the Harvard Dataverse (https://dataverse.harvard.edu/dataverse/local_bubble_star_formation/), including Extended Data Table 1 (https://doi.org/10.7910/DVN/ZU97QD), Extended Data Table 2 (https://doi.org/10.7910/DVN/1VT8BC), per-star data for individual stellar cluster members (https://doi.org/10.7910/DVN/1UPMDX) and the cluster tracebacks (https://doi.org/10.7910/DVN/E8PQOD).
Code availability
The results generated in this work are based on publicly available software packages and do not involve the extensive use of custom code. Given each star’s reported Gaia data, we use the astropy38 package to obtain the Heliocentric Galactic Cartesian positions and velocities. The extreme deconvolution algorithm in the astroML51 package is used to estimate the mean 3D positions and velocities of the stellar clusters. The Orbit functionality in the galpy40 package is used to perform the dynamical tracebacks. The dynesty43 package is used to fit the analytic superbubble expansion model and determine the best-fit parameters governing the Local Bubble’s evolution.
References
Cox, D. P. & Reynolds, R. J. The local interstellar medium. Annu. Rev. Astron. Astrophys. 25, 303–344 (1987).
Lucke, P. B. The distribution of color excesses and interstellar reddening material in the solar neighborhood. Astron. Astrophys. 64, 367–377 (1978).
Sanders, W. T., Kraushaar, W. L., Nousek, J. A. & Fried, P. M. Soft diffuse X-rays in the southern galactic hemisphere. Astrophys. J. Lett. 217, L87–L91 (1977).
Lallement, R., Welsh, B. Y., Vergely, J. L., Crifo, F. & Sfeir, D. 3D mapping of the dense interstellar gas around the Local Bubble. Astron. Astrophys. 411, 447–464 (2003).
Welsh, B. Y., Lallement, R., Vergely, J.-L. & Raimond, S. New 3D gas density maps of NaI and CaII interstellar absorption within 300 pc. Astron. Astrophys. 510, A54 (2010).
Fuchs, B., Breitschwerdt, D., de Avillez, M. A., Dettbarn, C. & Flynn, C. The search for the origin of the Local Bubble redivivus. Mon. Not. R. Astron. Soc. 373, 993–1003 (2006).
Breitschwerdt, D. et al. The locations of recent supernovae near the Sun from modelling 60Fe transport. Nature. 532, 73–76 (2016).
Frisch, P. & Dwarkadas, V. V. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 2253–2285 (Springer International Publishing, 2017).
Leike, R. H., Glatzle, M. & Enßlin, T. A. Resolving nearby dust clouds. Astron. Astrophys. 639, A138 (2020).
Lallement, R. et al. Gaia-2MASS 3D maps of Galactic interstellar dust within 3 kpc. Astron. Astrophys. 625, A135 (2019).
Zucker, C. et al. On the three-dimensional structure of local molecular clouds. Astrophys. J. 919, 35 (2021).
Lindegren, L. et al. Gaia Early Data Release 3 – the astrometric solution. Astron. Astrophys. Suppl. Ser. 649, A2 (2021).
Pelgrims, V., Ferrière, K., Boulanger, F., Lallement, R. & Montier, L. Modeling the magnetized Local Bubble from dust data. Astron. Astrophys. 636, A17 (2020).
Welsh, B. Y., Sfeir, D. M., Sirk, M. M. & Lallement, R. EUV mapping of the local interstellar medium: the Local Chimney revealed? Astron. Astrophys. 352, 308–316 (1999).
Bialy, S. et al. The Per-Tau Shell: a giant star-forming spherical shell revealed by 3D dust observations. Astrophys. J. Lett. 919, L5 (2021).
Alves, J. et al. A Galactic-scale gas wave in the solar neighbourhood. Nature. 578, 237–239 (2020).
Großschedl, J. E., Alves, J., Meingast, S. & Herbst-Kiss, G. 3D dynamics of the Orion cloud complex – discovery of coherent radial gas motions at the 100-pc scale. Astron. Astrophys. Suppl. Ser. 647, A91 (2021).
Perrot, C. A. & Grenier, I. A. 3D dynamical evolution of the interstellar gas in the Gould Belt. Astron. Astrophys. Suppl. Ser. 404, 519–531 (2003).
Dzib, S. A., Loinard, L., Ortiz-León, G. N., Rodríguez, L. F. & Galli, P. A. B. Distances and kinematics of Gould Belt star-forming regions with Gaia DR2 results. Astrophys. J. 867, 151 (2018).
Kerr, R. M. P., Rizzuto, A. C., Kraus, A. L. & Offner, S. S. R. Stars with Photometrically Young Gaia Luminosities Around the Solar System (SPYGLASS). I. Mapping young stellar structures and their star formation histories. Astrophys. J. 917, 23 (2021).
Maíz-Apellániz, J. The origin of the Local Bubble. Astrophys. J. Lett. 560, L83–L86 (2001).
El-Badry, K., Ostriker, E. C., Kim, C.-G., Quataert, E. & Weisz, D. R. Evolution of supernovae-driven superbubbles with conduction and cooling. Mon. Not. R. Astron. Soc. 490, 1961–1990 (2019).
Inutsuka, S.-I., Inoue, T., Iwasaki, K. & Hosokawa, T. The formation and destruction of molecular clouds and galactic star formation. An origin for the cloud mass function and star formation efficiency. Astron. Astrophys. 580, A49 (2015).
Dawson, J. R. The supershell–molecular cloud connection: large-scale stellar feedback and the formation of the molecular ISM. Publ. Astron. Soc. Aust. 30, e025 (2013).
Cox, D. P. & Smith, B. W. Large-scale effects of supernova remnants on the Galaxy: generation and maintenance of a hot network of tunnels. Astrophys. J. Lett. 189, L105–L108 (1974).
McKee, C. F. & Ostriker, J. P. A theory of the interstellar medium: three components regulated by supernova explosions in an inhomogeneous substrate. Astrophys. J. 218, 148–169 (1977).
Kim, C.-G., Ostriker, E. C. & Raileanu, R. Superbubbles in the multiphase ISM and the loading of Galactic winds. Astrophys. J. 834, 25 (2017).
Galli, P. A. B. et al. Lupus DANCe. Census of stars and 6D structure with Gaia-DR2 data. Astron. Astrophys. 643, A148 (2020).
Grasser, N. et al. The ρ Oph region revisited with Gaia EDR3. Astron. Astrophys. 652, A2 (2021)
Galli, P. A. B. et al. Chamaeleon DANCe. Revisiting the stellar populations of Chamaeleon I and Chamaeleon II with Gaia-DR2 data. Astron. Astrophys. 646, A46 (2021).
Galli, P. A. B. et al. Corona-Australis DANCe. I. Revisiting the census of stars with Gaia-DR2 data. Astron. Astrophys. 634, A98 (2020).
Krolikowski, D. M., Kraus, A. L. & Rizzuto, A. C. Gaia EDR3 reveals the substructure and complicated star formation history of the Greater Taurus-Auriga star-forming complex. Astron. J. 162, 3 (2021).
Gagné, J. & Faherty, J. K. BANYAN. XIII. A first look at nearby young associations with Gaia Data Release 2. Astrophys. J. 862, 138 (2018).
Gagné, J. et al. BANYAN. XI. The BANYAN Σ multivariate Bayesian algorithm to identify members of young associations with 150 pc. Astrophys. J. 856, 23 (2018).
Ortiz-León, G. N. et al. The Gould’s Belt Distances Survey (GOBELINS). V. Distances and kinematics of the Perseus Molecular Cloud. Astrophys. J. 865, 73 (2018).
Herczeg, G. J. et al. An initial overview of the extent and structure of recent star formation within the Serpens molecular cloud using Gaia Data Release 2. Astrophys. J. 878, 111 (2019).
Fabricius, C. et al. Gaia Early Data Release 3 – catalogue validation. Astron. Astrophys. Suppl. Ser. 649, A5 (2021).
The Astropy Collaboration. The Astropy Project: building an open-science project and status of the v2.0 Core Package*. Astron. J. Supp. 156, 123 (2018).
Bovy, J., Hogg, D. W. & Roweis, S. T. Extreme deconvolution: inferring complete distribution functions from noisy, heterogeneous and incomplete observations. Ann. Appl. Stat. 5, 1657–1677 (2011).
Bovy, J. galpy: a Python library for Galactic dynamics. Astrophys. J. Supp. 216, 29 (2015).
Kerr, F. J. & Lynden-Bell, D. Review of galactic constants. Mon. Not. R. Astron. Soc. 221, 1023–1038 (1986).
Kamdar, H., Conroy, C. & Ting, Y.-S. Stellar streams in the Galactic disk: predicted lifetimes and their utility in measuring the galactic potential. Preprint at https://arxiv.org/abs/2106.02050v1 (2021).
Speagle, J. S. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).
Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).
Gontcharov, G. & Mosenkov, A. Interstellar polarization and extinction in the Local Bubble and the Gould Belt. Mon. Not. R. Astron. Soc. 483, 299–314 (2019).
Dehnen, W. & Binney, J. J. Local stellar kinematics from Hipparcos data. Mon. Not. R. Astron. Soc. 298, 387–394 (1998).
Francis, C. & Anderson, E. Calculation of the local standard of rest from 20574 local stars in the New Hipparcos Reduction with known radial velocities. New Astron. 14, 615–629 (2009).
Wang, F. et al. Local stellar kinematics and Oort constants from the LAMOST A-type stars. Mon. Not. R. Astron. Soc. 504, 199–207 (2021).
Reid, M. J. et al. Trigonometric parallaxes of high-mass star-forming regions: our view of the Milky Way. Astrophys. J. 885, 131 (2019).
Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).
VanderPlas, J., Connolly, A. J., Ivezić, Ž. & Gray, A. Introduction to astroML: machine learning for astrophysics. In Proc. 2012 Conference on Intelligent Data Understanding 47–54 (IEEE, 2012).
Acknowledgements
The visualization, exploration and interpretation of data presented in this work were made possible using the glue visualization software, supported under NSF grant numbers OAC-1739657 and CDS&E:AAG-1908419. The interactive figures were made possible by the plot.ly python library. D.P.F. acknowledges support by NSF grant AST-1614941 ‘Exploring the Galaxy: 3-Dimensional Structure and Stellar Streams’. D.P.F., A.A.G. and C.Z. acknowledge support by NASA ADAP grant 80NSSC21K0634 ‘Knitting Together the Milky Way: An Integrated Model of the Galaxy’s Stars, Gas, and Dust’. A.B. acknowledges support by the Excellence Cluster ORIGINS, which is funded by the German Research Foundation (DFG) under Germany’s Excellence Strategy -EXC-2094-390783311. J.A. acknowledges support from the Data Science Research Centre and the TURIS Research Platform of the University of Vienna. J.G. acknowledges funding by the Austrian Research Promotion Agency (FFG) under project number 873708. C.Z. acknowledges that support for this work was provided by NASA through the NASA Hubble Fellowship grant number HST-HF2-51498.001 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. C.Z., A.A.G., J.A. and S.B. acknowledge Interstellar Institute’s program ‘The Grand Cascade’ and the Paris-Saclay University’s Institut Pascal for hosting discussions that encouraged the development of the ideas behind this work.
Author information
Authors and Affiliations
Contributions
C.Z. led the work and wrote the majority of the text. All authors contributed to the text. C.Z., A.A.G. and J.A. led interpretation of the observational results, aided by S.B., M.F. and A.B. who helped interpret their significance in light of theoretical models for supernova-driven star formation. C.Z. and A.A.G. led the visualization efforts. J.S.S. and D.P.F. helped shape the statistical modelling of the Local Bubble’s expansion. C.Z., A.A.G. and J.S.S. contributed to the software used in this work. J.G. and C.S. provided data for and the subsequent interpretation of the 3D kinematics of the Orion region. D.K. helped to develop the code used to model the 3D positions and motions of stellar clusters described in the Methods.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review information
Nature thanks Joanne Dawson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 1D and 2D marginal distributions (“corner plot”) of the model parameters governing the evolution of the Local Bubble’s expanding shell.
Parameters include the time since the first explosion (i.e. the age of the Local Bubble), texp, the density of the ambient medium the bubble is expanding into, n0, the time between supernova explosions powering its growth, 𝞓tSNe, and the thickness/uncertainty on the expanding shell radius 𝞓R. In the 1D distributions, the vertical dashed lines denote the median and 1𝝈 errors, while in the 2D distributions, we show the 0.5𝝈, 1𝝈, 1.5𝝈, and 2𝝈 contours.
Extended Data Fig. 2 Temporal evolution of the Local Bubble, based on the fit to the dynamical tracebacks and the analytic expansion model22 summarized in the Methods section.
Panel a) The evolution of the Local Bubble’s expansion velocity vexp. Panel b) The evolution of the Local Bubble’s shell radius Rshell. Panel c) The evolution of the average momentum injection per supernova pˆ. The thick purple line represents the median fit, while the thin purple lines represent random samples. We estimate a current radius of \(165\pm 6\) pc and current expansion velocity of \(6\,.7{\,}_{-0.4}^{+0.5}\) km/s, corresponding to time t=0 Myr (the present day).
Extended Data Fig. 3 PDF of the estimate of the number of supernovae required to power the Local Bubble’s expansion.
The estimate is obtained by comparing the shell’s present-day momentum to the average momentum injected by supernovae.
Extended Data Fig. 4 Analysis of the stellar tracebacks of the UCL and LCC clusters, whose progenitors were likely responsible for the supernovae that created the Local Bubble.
The scatter points indicate the positions of the current cluster members of UCL and LCC, which are colored as a function of time (spanning the present day in pink to 30 Myr ago in black). Panel a: Using Hipparcos data and adopting a solar peculiar motion (U☉, V☉, W☉) = (10.0, 5.2, 7.2) km/s46, previous literature6,7 find that UCL and LCC were born outside the Local Bubble (black trace4) 15 Myr ago and only entered its present-day boundary in the past 5 Myr (reproduced from Fig. 6 in ref. 6). Panel b: We attempt to reproduce the results from previous literature6,7 using the same data and solar motion, but are unable to account for the curvature of the tracebacks, finding the UCL and LCC formed just inside its northern boundary 15 Myr ago. Panel c: Using a different value for the solar motion, (U☉, V☉, W☉) = (10.0, 15.4, 7.8) km/s41 but the same Hipparcos data, we find that UCL and LCC were born near the center of the Local Bubble. Panel d: Finally, using updated Gaia data but the same adopted solar motion used in panel c. (U☉, V☉, W☉) = (10.0, 15.4, 7.8) km/s41, we also find that UCL and LCC were born near the center of the bubble, given an updated model for its surface13.
Supplementary information
Supplementary Figure 1
Interactive 3D visualization of dense gas and young stars on the Local Bubble’s surface. This figure is the interactive 3D counterpart to Fig. 1. The figure supports interactive panning, zooming and rotation. Individual data layers can be toggled on/off by clicking on the layer in the legend on the right-hand side of the figure. The surface of the Local Bubble13 is shown in purple. The short squiggly coloured lines (or ‘skeletons’) demarcate the 3D spatial morphology of dense gas in prominent nearby molecular clouds11. The 3D cones indicate the positions of young stellar clusters, with the apex of the cone pointing in the direction of stellar motion. The Sun is marked with a yellow cross. We also overlay the morphology of the 3D dust (grey blobby shapes9) and the models for two Galactic scale features—the Radcliffe Wave (red)16 and the Split (blue)10. The Per-Tau Superbubble15 (green sphere) is also overlaid.
Supplementary Figure 2
Interactive 3D visualization of the Local Bubble’s expansion. This figure is the interactive 3D counterpart to Fig. 2. The figure supports interactive panning, zooming and rotation. Individual data layers can be toggled on/off by clicking on the layer in the legend on the right-hand side of the figure. Stellar cluster tracebacks are shown with the coloured paths. Before the cluster birth, the tracebacks are shown as semi-transparent circles meant to guide the eye, since our modelling is insensitive to the dynamics of the gas before its conversion into stars. After the cluster birth, the tracebacks are shown with filled circles and terminate in a large dot, which marks the cluster’s current position. For time snapshots ≤14 Myr ago, we overlay a model for the evolution of the Local Bubble (purple sphere), as derived in the Methods. Click ‘Play Forward’ to see the Local Bubble evolve starting 17 Myr ago and progressing forwards to the present day. Click ‘Play Backward’ to see the evolution in reverse. Click ‘Pause’ to stop the animation. Alternatively, drag the time slider back and forth to view the Local Bubble’s expansion at any time. To jump to epochs of particular interest, click on any of the ‘action’ buttons (for example, ‘UCL Born’) on the right-hand side of the figure.
Rights and permissions
About this article
Cite this article
Zucker, C., Goodman, A.A., Alves, J. et al. Star formation near the Sun is driven by expansion of the Local Bubble. Nature 601, 334–337 (2022). https://doi.org/10.1038/s41586-021-04286-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-021-04286-5
This article is cited by
-
A reproduction of the Milky Way’s Faraday rotation measure map in galaxy simulations from global to local scales
Nature Astronomy (2023)
-
Galactic interstellar scintillation observed from four globular cluster pulsars by FAST
Science China Physics, Mechanics & Astronomy (2023)
-
Scientific objectives of the Hot Universe Baryon Surveyor (HUBS) mission
Science China Physics, Mechanics & Astronomy (2023)
-
Future Exploration of the Outer Heliosphere and Very Local Interstellar Medium by Interstellar Probe
Space Science Reviews (2023)
-
Galactic Cosmic Rays Throughout the Heliosphere and in the Very Local Interstellar Medium
Space Science Reviews (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.