Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantiomer-dependent immunological response to chiral nanoparticles

Abstract

Chirality is a unifying structural metric of biological and abiological forms of matter. Over the past decade, considerable clarity has been achieved in understanding the chemistry and physics of chiral inorganic nanoparticles1,2,3,4; however, little is known about their effects on complex biochemical networks5,6. Intermolecular interactions of biological molecules and inorganic nanoparticles show some commonalities7,8,9, but these structures differ in scale, in geometry and in the dynamics of chiral shapes, which can both impede and strengthen their mirror-asymmetric complexes. Here we show that achiral and left- and right-handed gold biomimetic nanoparticles show different in vitro and in vivo immune responses. We use irradiation with circularly polarized light (CPL) to synthesize nanoparticles with controllable nanometre-scale chirality and optical anisotropy factors (g-factors) of up to 0.4. We find that binding of nanoparticles to two proteins from the family of adhesion G-protein-coupled receptors (AGPCRs)—namely cluster-of-differentiation 97 (CD97) and epidermal-growth-factor-like-module receptor 1 (EMR1)—results in the opening of mechanosensitive potassium-efflux channels, the production of immune signalling complexes known as inflammasomes, and the maturation of mouse bone-marrow-derived dendritic cells. Both in vivo and in vitro immune responses depend monotonically on the g-factors of the nanoparticles, indicating that nanoscale chirality can be used to regulate the maturation of immune cells. Finally, left-handed nanoparticles show substantially higher (1,258-fold) efficiency compared with their right-handed counterparts as adjuvants for vaccination against the H9N2 influenza virus, opening a path to the use of nanoscale chirality in immunology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology and spectroscopy of photosynthesized chiral nanoparticles (NPs).
Fig. 2: Quantification of electromagnetic fields and chirality measures for photosynthesized nanoparticles.
Fig. 3: Nanoparticle-mediated immune responses.
Fig. 4: Chirality-dependent intracellular intake of BMDCs.

Similar content being viewed by others

Data availability

Source data for Figs. 3, 4 and Extended Data Figs. 1, 2 are provided with this paper. The data supporting the findings of this study are available within the paper and its Supplementary Information files. Source data are provided with this paper.

References

  1. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Copeland, L. O. & McDonald, M. B. in Principles of Seed Science and Technology 59–110 (Springer, 1999).

  3. Zhang, Q. et al. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 365, 1475–1478 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Guerrero-Martínez, A., Alonso-Gómez, J. L., Auguié, B., Cid, M. M. & Liz-Marzán, L. M. From individual to collective chirality in metal nanoparticles. Nano Today 6, 381–400 (2011).

    Article  Google Scholar 

  5. Kuznetsova, V. A. et al. Enantioselective cytotoxicity of ZnS:Mn quantum dots in A549 cells. Chirality 29, 403–408 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Sun, M. et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. 10, 821–830 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Kotov, N. A. Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Cagno, V. et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater. 17, 195–203 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wang, D. et al. Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Sci. Immunol. 4, eaau6584 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Gérard, V. A. et al. Plasmon-induced CD response of oligonucleotide-conjugated metal nanoparticles. Chem. Commun. 47, 7383 (2011).

    Article  Google Scholar 

  11. Yeom, J. et al. Chiromagnetic nanoparticles and gels. Science 359, 309–314 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Ma, W. et al. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 4, 2689 (2013).

    Article  ADS  PubMed  Google Scholar 

  13. Zheng, G. et al. Tuning the morphology and chiroptical properties of discrete gold nanorods with amino acids. Angew. Chem. Int. Edn 57, 16452–16457 (2018).

    Article  CAS  Google Scholar 

  14. Chen, W. et al. Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials. Nano Lett., 9, 2153–2159 (2009).

  15. Singh, G. et al. Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Molotsky, T., Tamarin, T., Ben Moshe, A., Markovich, G. & Kotlyar, A. B. Synthesis of chiral silver clusters on a DNA template. J. Phys. Chem. C 114, 15951–15954 (2010).

    Article  CAS  Google Scholar 

  17. Im, S. W. et al. Chiral surface and geometry of metal nanocrystals. Adv. Mater. 32, 1905758 (2020).

    Article  CAS  Google Scholar 

  18. Wang, J. et al. Physical activation of innate immunity by spiky particles. Nat. Nanotechnol. 13, 1078–1086 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Geva, M., Frolow, F., Eisenstein, M. & Addadi, L. Antibody recognition of chiral surfaces. Enantiomorphous crystals of leucine-leucine-tyrosine. J. Am. Chem. Soc. 125, 696–704 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. del Pino, P. et al. Protein corona formation around nanoparticles—from the past to the future. Mater. Horiz. 1, 301–313 (2014).

    Article  Google Scholar 

  22. Wang, X. et al. Chiral surface of nanoparticles determines the orientation of adsorbed transferrin and its interaction with receptors. ACS Nano 11, 4606–4616 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, J.-Y. et al. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. J. Am. Chem. Soc. 141, 11739–11744 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yeom, J. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 14, 66–72 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Ou, Z., Wang, Z., Luo, B., Luijten, E. & Chen, Q. Kinetic pathways of crystallization at the nanoscale. Nat. Mater. 19, 450–455 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Karst, J. et al. Chiral scatterometry on chemically synthesized single plasmonic nanoparticles. ACS Nano 13, 8659–8668 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. González-Rubio, G. et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 358, 640–644 (2017).

    Article  ADS  PubMed  Google Scholar 

  28. Saito, K. & Tatsuma, T. Chiral plasmonic nanostructures fabricated by circularly polarized light. Nano Lett. 18, 3209–3212 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Lee, H.-E. et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360–365 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zhang, Q. et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13, 1182–1190 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Pelliccia, M. et al. Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. Nat. Commun. 7, 13520 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xia, Y. et al. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nat. Mater. 17, 187–194 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Langenhan, T., Aust, G. & Hamann, J. Sticky signaling—adhesion class G protein-coupled receptors take the stage. Sci. Signal. 6, re3 (2013).

    Article  PubMed  Google Scholar 

  34. Oldham, W. M. & Hamm, H. E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Ferguson, S. M. & De Camilli, P. Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol. 13, 75–88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Richards, D. M. & Endres, R. G. Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis. Proc. Natl Acad. Sci. USA 113, 6113–6118 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mahmoudi, M., Azadmanesh, K., Shokrgozar, M. A., Journeay, W. S. & Laurent, S. Effect of nanoparticles on the cell life cycle. Chem. Rev. 111, 3407–3432 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ohta, S., Glancy, D. & Chan, W. C. W. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science 351, 841–845 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Naur, P. et al. Ionotropic glutamate-like receptor 2 binds D-serine and glycine. Proc. Natl Acad. Sci. USA 104, 14116–14121 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cobb, M. H. & Ross, E. M. in Mol. Biol. Cell 6th edn (eds Alberts, B. et al.) 589–643 (Garland, 2002).

  42. Muñoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ranade, S. S., Syeda, R. & Patapoutian, A. Mechanically activated ion channels. Neuron 87, 1162–1179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Galic, M. et al. External push and internal pull forces recruit curvature-sensing N-BAR domain proteins to the plasma membrane. Nat. Cell Biol. 14, 874–881 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, L. et al. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 14, 7201–7206 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21925402, 32071400, 21977038, 92156003), Natural Science Foundation of Jiangsu Province (BK20212014), and Young Elite Scientist Sponsorship Program by China Association for Science and Technology (CAST) (2019QNRC001). N.A.K thanks the US National Science Foundation (NSF) (grants 1463474 and 1566460) for support. A.F.M. thanks the Brazilian Ministério da Educação (MEC)/Tutorial Education Programme (PET) for a fellowship and Conselho Nacional de Desenvolvimento Cientifíco e Tecnólogico (CNPq) for a research fellowship (311353/2019-3). We thank the Brazilian funding agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superio (CAPES), CNPq, and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (processes 2012/15147-4 and 2013/07296-2) for financial support; and the high-performance computer (HPC) resources provided by the SDumont supercomputer at the National Laboratory for Scientific Computing (Laboratório Nacional de Computação Científica (LNCC)/Ministério da Ciência, Tecnologia e Inovações (MCTI), Brazil; http://sdumont.lncc.br) and by the Cloud@UFSCar.

Author information

Authors and Affiliations

Authors

Contributions

H.K., N.A.K. and C.X. conceived the project and planned the experiments. L.X., X. Wang, C.H., S.L. and X. Wu fabricated the chiral nanoparticles. L.X., W.W., M.S., A.Q., M.L. and X.G. carried out immunological experiments. X. Wang and X.G. measured the affinity constant between chiral nanoparticles and receptors. L.X., M.S., A.Q. and M.L. carried out the inflammasome experiments. W.J.C. carried out electromagnetic modelling and simulation. J.-Y.K. calculated the chirality measures. F.M.C., W.R.G., A.L.B. and A.F.D. carried out electrodynamics calculations. L.X., H.K., N.A.K. and C.X. conceptualized the work, wrote the manuscript, and compiled figures, with discussion of results and feedback on the manuscript from all authors.

Corresponding authors

Correspondence to Hua Kuang, Nicholas A. Kotov or Chuanlai Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature thanks Jacques Neefjes, Luke O’Neill and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Chiral nanoparticles are taken up by human BMDCs and activate inflammasomes.

a, Flow-cytometry data for human BMDCs after being treated with PBS, anti-EMR1 antibody (30 μg ml−1, blocking EMR1), anti-CD97 antibody (20 μg ml−1, blocking CD97), or both anti-EMR1 antibody (30 μg ml−1) and anti-CD97 antibody (20 μg ml−1) (blocking both CD97 and EMR1) and then incubated with l-P+ NP(2 nM) or d-P NP (2 nM) for 8 h. b, Confocal imaging of human BMDCs incubated with 2 μg ml−1 MPL, 20 μg ml−1 OVA and 2 nM l-P+ NP with various incubation times up to 4 h. Blue, DAPI; red, CD97–Cy5; green: l-P+ NP–Cy3. Scale bar, 10 μm. c, Confocal imaging of NLRP3 inflammasome activation in mouse BMDCs after incubation with PBS, MPL plus OVA, l-P+ NP + MPL + OVA, l-P+ NP + MPL + OVA + MCC950 (NLRP3 inhibitor), l-P+ NP + MPL + OVA + amiodarone (K+-channel inhibitor), l-P+ NP + MPL + OVA + KCl (K+-efflux inhibitor), l-P+ NP + MPL + OVA + dynasore (dynamin inhibitor), l-P+ NP + MPL + OVA + chlorpromazine (clathrin inhibitor), l-P+ NP + MPL + OVA + CA-074-Me (cathepsin B inhibitor), l-P+ NP + MPL + OVA + cytochalasin D (phagocytosis inhibitor), l-P+ NP + MPL + OVA + NAC (inhibitor of reactive oxygen species, ROS) and l-P+ NP + MPL + OVA + nocodazole (microtubule inhibitor) for 12 h. Blue, DAPI; red, caspase-1; green, NLRP3. Scale bar, 20 μm. Data are mean ± s.d. (n = 5). *P < 0.05, **P < 0.01, ***P < 0.001, analysed by Student’s t-test.

Source data

Extended Data Fig. 2 Chirality-dependent efficiency of vaccination in mice.

a, IL-1β concentration in the culture medium of mouse BMDCs after incubation with chiral nanoparticles of different g-factors, measured by ELISA. b, Expression of NLRP3 in wild-type mice after treatment with chiral nanoparticles of different g-factors, detected by flow cytometry. cf, Influenza vaccination. C57BL/6 mice (n = 5) were immunized with H9N2 influenza vaccine and the indicated adjuvants, including MPL, alum + MPL, d-P NP + MPL, l-P+ NP + MPL, NS-d-CYP + MPL, or NS-l-CYP + MPL. c, The serum of the mice was collected to measure vaccine-specific antibody titres. df, IFN-γ-secreting CD8+ T cells (d), IFN-γ-secreting CD4+ T cells (e) and IL-4-secreting CD4+ T cells (f) in the spleen were measured by flow cytometry 7 days after immunization. Data are means ± s.d. (n = 5). *P < 0.05, **P < 0.01, ***P < 0.001, analysed by Student’s t-test.

Source data

Supplementary information

Supplementary Information

This file contains Supplementary Methods; Supplementary Tables 1–3; Supplementary Figures 1–30 and Supplementary References

Reporting Summary

Peer Review File

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Wang, X., Wang, W. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 601, 366–373 (2022). https://doi.org/10.1038/s41586-021-04243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04243-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research