Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A 16-parts-per-trillion measurement of the antiproton-to-proton charge–mass ratio


The standard model of particle physics is both incredibly successful and glaringly incomplete. Among the questions left open is the striking imbalance of matter and antimatter in the observable universe1, which inspires experiments to compare the fundamental properties of matter/antimatter conjugates with high precision2,3,4,5. Our experiments deal with direct investigations of the fundamental properties of protons and antiprotons, performing spectroscopy in advanced cryogenic Penning trap systems6. For instance, we previously compared the proton/antiproton magnetic moments with 1.5 parts per billion fractional precision7,8, which improved upon previous best measurements9 by a factor of greater than 3,000. Here we report on a new comparison of the proton/antiproton charge-to-mass ratios with a fractional uncertainty of 16 parts per trillion. Our result is based on the combination of four independent long-term studies, recorded in a total time span of 1.5 years. We use different measurement methods and experimental set-ups incorporating different systematic effects. The final result, \(-{(q/m)}_{p}/{(q/m)}_{\bar{p}}=1.000000000003(16)\), is consistent with the fundamental charge–parity–time reversal invariance, and improves the precision of our previous best measurement6 by a factor of 4.3. The measurement tests the standard model at an energy scale of 1.96 × 10−27 gigaelectronvolts (confidence level 0.68), and improves ten coefficients of the standard model extension10. Our cyclotron clock study also constrains hypothetical interactions mediating violations of the clock weak equivalence principle (WEPcc) for antimatter to less than 1.8 × 10−7, and enables the first differential test of the WEPcc using antiprotons11. From this interpretation we constrain the differential WEPcc-violating coefficient to less than 0.030.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Elements of the experiment to determine the antiproton-to-H charge-to-mass ratio.
Fig. 2: Results.
Fig. 3: Trajectory of the Earth on its orbit around the Sun.

Data and code availability

The datasets and analysis codes will be made available on reasonable request.


  1. Dine, M. & Kusenko, A. Origin of the matter–antimatter asymmetry. Rev. Mod. Phys. 76, 1–30 (2003).

    Article  ADS  Google Scholar 

  2. Van Dyck Jr, R. S., Schwinberg, P. B. & Dehmelt, H. G. New high-precision comparison of electron and positron g factors. Phys. Rev. Lett. 59, 26–29 (1987).

    Article  ADS  Google Scholar 

  3. Ahmadi, M. et al. Characterization of the 1S–2S transition in antihydrogen. Nature 557, 71–75 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Hori, M. et al. Buffer-gas cooling of antiprotonic helium to 1.5 K to 1.7 K, and antiproton-to-electron mass ratio. Science 354, 610–614 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Schwingenheuer, B. et al. CPT tests in the neutral kaon system. Phys. Rev. Lett. 74, 4376–4379 (1995).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Ulmer, S. et al. High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature 524, 196–199 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Smorra, C. et al. A parts-per-billion measurement of the antiproton magnetic moment. Nature 550, 371–374 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Schneider, G. et al. Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision. Science 358, 1081–1084 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. DiSciacca, J. et al. One-particle measurement of the antiproton magnetic moment. Phys. Rev. Lett. 110, 130801 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Ding, Y. & Rawnak, M. F. Lorentz and CPT tests with charge-to-mass ratio comparisons in Penning traps. Phys. Rev. D 102, 056009 (2020).

    Article  CAS  ADS  Google Scholar 

  11. Hughes, R. J. & Holzscheiter, M. H. Constraints on the gravitational properties of antiprotons and positrons from cyclotron-frequency measurements. Phys. Rev. Lett. 66, 854–857 (1991).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Lehnert, R. CPT symmetry and its violation. Symmetry 8, 114 (2016).

    Article  MathSciNet  Google Scholar 

  13. Lüders, G. Proof of the TCP theorem. Ann. Phys. 2, 1–15 (1957).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Edwards, B. R. & Kostelecký, V. A. Riemann–Finsler geometry and Lorentz-violating scalar fields. Phys. Lett. B 786, 319–326 (2018).

    Article  MathSciNet  CAS  MATH  ADS  Google Scholar 

  15. Tsujikawa, S. Quintessence: a review. Class. Quantum Gravity 30, 214003 (2013).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Kostelecký, V. A. & Potting, R. CPT and strings. Nucl. Phys. B 359, 545–570 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  17. Weinberg, S. Cosmology (Oxford Univ. Press, 2008).

  18. Hughes, R. J. Constraints on new macroscopic forces from gravitational redshift experiments. Phys. Rev. D 41, 2367–2373 (1990).

    Article  CAS  ADS  Google Scholar 

  19. Smorra, C. et al. BASE – the Baryon Antibaryon Symmetry Experiment. Eur. Phys. J. Spec. Top. 224, 3055–3108 (2015).

    Article  Google Scholar 

  20. Sellner, S. et al. Improved limit on the directly measured antiproton lifetime. New J. Phys. 19, 083023 (2017).

    Article  ADS  Google Scholar 

  21. Smorra, C. et al. A reservoir trap for antiprotons. Int. J. Mass Spectrom. 389, 10–13 (2015).

    Article  CAS  Google Scholar 

  22. Gabrielse, G., Haarsma, L. & Rolston, S. L. Open-endcap Penning traps for high precision experiments. Int. J. Mass Spectrom. 88, 319–332 (1989).

    Article  CAS  ADS  Google Scholar 

  23. Brown, L. S. & Gabrielse, G. Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233–311 (1986).

    Article  CAS  ADS  Google Scholar 

  24. Gabrielse, G. et al. Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198–3201 (1999).

    Article  CAS  ADS  Google Scholar 

  25. Nagahama, H. et al. Highly sensitive superconducting circuits at 700 kHz with tunable quality factors for image-current detection of single trapped antiprotons. Rev. Sci. Instrum. 87, 113305 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. BASE Collaboration. Future Program of the BASE Experiment at the Antiproton Decelerator of CERN. Document no. CERN-SPSC-2019-047; SPSC-P-363 (CERN, 2019); available at

  27. Devlin, J. A. et al. Superconducting solenoid system with adjustable shielding factor for precision measurements of the properties of the antiproton. Phys. Rev. Appl. 12, 044012 (2019).

    Article  CAS  ADS  Google Scholar 

  28. Heiße, F. et al. High-precision measurement of the proton’s atomic mass. Phys. Rev. Lett. 119, 033001 (2017).

    Article  PubMed  ADS  Google Scholar 

  29. Cornell, E. A., Weisskoff, R. M., Boyce, K. R. & Pritchard, D. E. Mode coupling in a Penning trap: π pulses and a classical avoided crossing. Phys. Rev. A 41, 312–315 (1990).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Ketter, J., Eronen, T., Höcker, M., Streubel, S. & Blaum, K. First-order perturbative calculation of the frequency-shifts caused by static cylindrically-symmetric electric and magnetic imperfections of a Penning trap. Int. J. Mass Spectrom. 358, 1–16 (2014).

    Article  CAS  Google Scholar 

  31. Hoaglin, D. C., Mosteller, F. & Tukey, J. W. Understanding Robust and Exploratory Data Analysis (Wiley, 2000).

  32. Le Cam, L. Asymptotic Methods in Statistical Decision Theory (Springer, 2012).

  33. Rao, C. R. Information and the accuracy attainable in the estimation of statistical parameters. In Breakthroughs in Statistics (eds Kotz S. & Johnson, N. L.) 235–247 (Springer, 1992).

  34. Natarayan, V. Penning Trap Mass Spectroscopy at 0.1 ppb. PhD thesis, MIT (1993).

  35. Wang, Y. & Liu, Q. Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of stock–recruitment relationships. Fish. Res. 77, 220–225 (2006).

    Article  Google Scholar 

  36. Charlton, M., Eriksson, S. & Shore, G. Testing fundamental physics in antihydrogen experiments. Preprint at (2020).

  37. Kenyon, I. A recalculation on the gravitational mass difference between the K0 and \({\bar{K}}^{0}\) mesons. Phys. Lett. B 237, 274–277 (1990).

    Article  CAS  Google Scholar 

  38. Tchernin, C., Lau, E. T., Stapelberg, S., Hug, D. & Bartelmann, M. Characterizing galaxy clusters by their gravitational potential: systematics of cluster potential reconstruction. Astron. Astrophys. 644, A126 (2020).

    Article  ADS  Google Scholar 

  39. Chardin, G. & Manfredi, G. Gravity, antimatter and the Dirac–Milne universe. Hyperfine Interact. 239, 45 (2018).

    Article  ADS  Google Scholar 

  40. Super-Kamiokande Collaboration. Search for proton decay via pe+π0 and pμ+π0 in 0.31 megaton years exposure of the Super-Kamiokande water Cherenkov detector. Phys. Rev. D 95, 012004 (2017).

    Article  ADS  Google Scholar 

  41. Perez, P. & Sacquin, Y. The GBAR experiment: gravitational behaviour of antihydrogen at rest. Class. Quantum Gravity 29, 184008 (2012).

    Article  ADS  Google Scholar 

  42. Bertsche, W. A. Prospects for comparison of matter and antimatter gravitation with ALPHA-g. Phil. Trans. R. Soc. A 376, 20170265 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  43. Scampoli, P. & Storey, J. The AEgIS experiment at CERN for the measurement of antihydrogen gravity acceleration. Mod. Phys. Lett. A 29, 1430017 (2014).

    Article  ADS  Google Scholar 

  44. Bluhm, R., Kostelecký, V. A. & Russell, N. CPT and Lorentz tests in Penning traps. Phys. Rev. D 57, 3932–3943 (1998).

    Article  CAS  ADS  Google Scholar 

  45. Kosteleckỳ, V. A. & Russell, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 83, 11–31 (2011).

    Article  ADS  Google Scholar 

  46. Smorra, C. et al. Technical Design Report of BASE-STEP (CERN, 2021);

  47. Thompson, J. K., Rainville, S. & Pritchard, D. E. Cyclotron frequency shifts arising from polarization forces. Nature 430, 58–61 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Rau, S. et al. Penning trap mass measurements of the deuteron and the HD+ molecular ion. Nature 585, 43–47 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Kortunov, I. et al. Proton–electron mass ratio by high-resolution optical spectroscopy of ion ensembles in the resolved carrier regime. Nat. Phys. 17, 569–573 (2021).

    Article  CAS  Google Scholar 

  50. Patra, S. et al. Proton–electron mass ratio from laser spectroscopy of HD+ at the part-per-trillion level. Science 369, 1238–1241 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Kramida, A., Ralchenko, Yu., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database (ver. 5.8). (National Institute of Standards and Technology, accessed 26 November 2020);

  52. Parthey, C. G. et al. Improved measurement of the hydrogen 1S–2S transition frequency. Phys. Rev. Lett. 107, 203001 (2011).

    Article  PubMed  ADS  Google Scholar 

  53. Jentschura, U. D., Kotochigova, S., Le Bigot, E.-O., Mohr, P. J. & Taylor, B. N. Precise calculation of transition frequencies of hydrogen and deuterium based on a least-squares analysis. Phys. Rev. Lett. 95, 163003 (2005).

    Article  PubMed  ADS  Google Scholar 

  54. Lykke, K. R., Murray, K. K. & Lineberger, W. C. Threshold photodetachment of H. Phys. Rev. A 43, 6104–6107 (1991).

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Sahoo, B. Determination of the dipole polarizability of the alkali-metal negative ions. Phys. Rev. A 102, 022820 (2020).

    Article  CAS  ADS  Google Scholar 

  56. Wineland, D. & Dehmelt, H. Principles of the stored ion calorimeter. J. Appl. Phys. 46, 919–930 (1975).

    Article  ADS  Google Scholar 

  57. D’Urso, B., Odom, B. & Gabrielse, G. Feedback cooling of a one-electron oscillator. Phys. Rev. Lett. 90, 043001 (2003).

    Article  PubMed  ADS  Google Scholar 

Download references


We acknowledge technical support by CERN, especially the Antiproton Decelerator operation group, CERN’s cryolab team and engineering department, and all other CERN groups that provide support to Antiproton Decelerator experiments. We acknowledge Y. Ding for comments in the discussion of the updated SME limits. We acknowledge financial support by RIKEN, the RIKEN EEE pioneering project funding, the RIKEN SPDR and JRA programme, the Max Planck Society, the European Union (FunI-832848, STEP-852818), CRC 1227 ‘DQ-mat’(DFG 274200144), the Cluster of Excellence ‘Quantum Frontiers’ (DFG 390837967), AVA-721559, the CERN fellowship programme and the Helmholtz-Gemeinschaft. This work was supported by the Max Planck, RIKEN, PTB Center for Time, Constants, and Fundamental Symmetries (C-TCFS).

Author information

Authors and Affiliations



The experiment was designed and built by S.U. and C.S.; and M.J.B., J.A.D., J.A.H., T.H. and E.J.W. developed several technical upgrades. J.A.H., S.U., T.H., J.A.D., E.J.W. and M.J.B. developed the control code. J.A.H., M.J.B., T.H., J.A.D., E.J.W. and S.U. took part in the data acquisition. M.J.B., S.U., J.A.D., J.A.H., E.J.W. and M.F. performed the systematic studies. J.A.H., M.J.B., T.H., J.A.D., E.J.W., S.R.E. and S.U. contributed to the maintenance of the experiment during the measurement campaign. The data were analysed by S.U., E.J.W. and J.A.H.; and J.A.D., M.J.B., B.M.L. and C.W. contributed to the systematic analysis. The final results were discussed with all co-authors. The manuscript was written by S.U. and discussed with E.J.W., J.A.D., B.M.L., C.S. and K.B.; all co-authors discussed and approved the content.

Corresponding author

Correspondence to S. Ulmer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Energy calibration.

Upper: Measured cyclotron frequency shift as a function of the measured axial frequency shift. Lower: Measured cyclotron frequency shift as a function of particle energy E+.

Extended Data Fig. 2 Dominant systematic uncertainty.

Upper: measured axial frequency ratio as a function of the frequency ratio of the axial detection resonators. We observe a weak linear scaling of the measured axial frequency ratio as a function of the detuning of the axial frequency with respect to the resonator centre. Green line: weighted linear fit, red and blue functions represent CL 0.68 and CL 0.95 error bands. Lower: Residuals of upper plot.

Extended Data Fig. 3 B2-imposed uncertainty in peak frequency ratio.

Upper: Sensitivity of the frequency ratio R as a function of the coefficient B2 for different particle energy differences E+,p − E+,H, expressed as ΔRB2E+). Lower: Measured particle energy differences E+,p − E+,H throughout the peak run. The green vertical lines indicate the mean difference and the uncertainty, the vertical green lines define the frequency-ratio shift and its uncertainty caused by the uncertainties in energy similarity and B2.

Extended Data Table 1 Summary of lineshape corrections applied to the different datasets
Extended Data Table 2 Axial temperatures
Extended Data Table 3 Total uncertainty budget
Extended Data Table 4 Improved SME coefficients

Supplementary information

Supplementary Information

This file contains a description of the data analysis, data cleaning, and data processing. It also contains notes regarding order systematic shifts and includes Supplementary Figs 1–10 and Supplementary Tables 1–3.

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borchert, M.J., Devlin, J.A., Erlewein, S.R. et al. A 16-parts-per-trillion measurement of the antiproton-to-proton charge–mass ratio. Nature 601, 53–57 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing